Expertenkommission
Ingenieurwissenschaften@BW2025
Abschlussbericht
Expertenkommission
Ingenieurwissenschaften@BW2025

Abschlussbericht

zur Übergabe an Frau Ministerin Theresia Bauer,
Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Dezember 2015
Inhaltsverzeichnis

1 Einleitung
1.1 Ziel und Auftrag der Kommission ... 1
1.2 Methodik und Arbeitsweise .. 1
1.3 Zusammensetzung ... 2

2 Die Ingenieurwissenschaften – Herkunft, Aufgaben und Perspektiven 4
2.1 Selbstverständnis der Ingenieurwissenschaften 4
2.2 Ingenieurinnen und Ingenieure – Aufgaben und Rollen 8
2.3 Institutionalisierung im Spannungsfeld von Inter- und Transdisziplinarität 10
2.3.1 Institutionalisierung der Ingenieurwissenschaften .. 10
2.3.2 Interdisziplinarität und Transdisziplinarität ... 11
2.4 Position im deutschen Innovationssystem ... 12
2.5 Stellung im globalen Kontext .. 15
2.5.1 Vorbild Baden-Württemberg ... 15
2.5.2 Stellung der Ingenieurinnen und Ingenieure in der Gesellschaft 16
2.5.3 Technologietransfer macht den Unterschied .. 17

3 Leitbild Ingenieurwissenschaften 2025 18
3.1 Die Welt im Jahr 2025 ... 18
3.1.1 Megatrends ... 18
3.1.2 Chancen und Herausforderungen für die Ingenieurwissenschaften 24
3.1.3 Chancen und Herausforderungen für das Ingenieurland
 Baden-Württemberg .. 26
3.2 Baden-Württemberg, das Land der Ingenieurinnen und
 Ingenieure: leistungsstark, vernetzt, interdisziplinär, exzellent 29
3.2.1 Anforderungen der Gesellschaft ... 29
3.2.2 Anforderungen der baden-württembergischen Unternehmen 30
3.2.3 Kompetenzen von Ingenieurinnen und Ingenieuren der Zukunft 31
3.2.4 Baden-Württemberg als „Exzellenzzentrum“ der Ingenieurwissenschaften... 31

4 Der Weg zum Exzellenzzentrum Baden-Württemberg 33
4.1 Lehre ... 33
4.1.1 Heutige und zukünftige Anforderungen an die Lehre in den
 Ingenieurwissenschaften .. 33
4.1.2 Was ist gute Lehre? ... 34
4.1.3 Handlungsfeld 1: Faszination Ingenieurin und Ingenieur – Begeisterung
 für technische Berufe und Studiengänge wecken 35
4.1.4 Handlungsfeld 2: Differenziertes Hochschulsystem in Baden-Württemberg –
 Profile in der Lehre weiterentwickeln und kommunizieren 39
4.1.5 Handlungsfeld 3: Heterogenität und Diversität als Chance – Qualität der
 Studienanfängerinnen und Studienanfänger erhöhen 43
4.1.6 Handlungsfeld 4: Entwicklungs perspektive Genderbalance – Attraktivität
 des Ingenieurberufs für Frauen steigern ... 45
4.1.7 Handlungsfeld 5: Vom Studienstart zum Berufseinstieg – Studienerfolg
 als Ganzes begreifen ... 47
4.1.8 Handlungsfeld 6: Wandel des Ingenieurberufs – Studieninhalte und Studienstrukturen auf die Zukunft ausrichten .. 51
4.1.9 Handlungsfeld 7: Personalentwicklung für gute Lehre – Stellenwert erhöhen und Lehrkompetenz fördern .. 53
4.1.10 Handlungsfeld 8: Finanzierung als Fundament – Gute Lehre finanziell dauerhaft absichern ... 55
4.1.11 Zusammensetzung der Arbeitsgruppe Lehre .. 59
4.2 Forschung .. 60
4.2.1 Was ist gute Forschung? ... 60
4.2.2 Handlungsfeld 1: Die Ingenieurwissenschaften als Innovationsmotor – Profile schärfen, Potenziale nutzen ... 61
4.2.3 Handlungsfeld 2: Investieren in die Zukunft – die Ingenieurwissenschaften an der Basis stärken .. 70
4.2.4 Handlungsfeld 3: Es geht um die Köpfe – Exzellente Ingenieurinnen und Ingenieure für Baden-Württemberg ausbilden ... 73
4.2.5 Handlungsfeld 4: Organisationsstrukturen und Forschungsinfrastruktur – Schlanke Prozesse in der Forschung etablieren .. 76
4.2.6 Zusammensetzung der Arbeitsgruppe Forschung .. 79
4.3 Transfer und Zusammenarbeit ... 80
4.3.1 Was ist guter Technologietransfer? ... 80
4.3.2 Stärken-Schwächen-Analyse ... 81
4.3.3 Handlungsfeld 1: Ich geh’ nach Baden-Württemberg – Exzellenzzentrum Ingenieurwissenschaften Baden-Württemberg entwickeln ... 92
4.3.4 Handlungsfeld 2: Gemeinsam stark – Zusammenarbeit zwischen Wissenschaft und Wirtschaft weiterentwickeln ... 94
4.3.5 Handlungsfeld 3: Gute Rahmenbedingungen sind unabdingbar – Transferprozesse beschleunigen ... 95
4.3.6 Handlungsfeld 4: Durchstarten! – Unternehmensgründungen aus Hochschulen und Forschungseinrichtungen unterstützen ... 97
4.3.7 Handlungsfeld 5: Qualität ist messbar – Monitoring-System für den Technologietransfer einführen ... 98
4.3.8 Zusammensetzung der Arbeitsgruppe Transfer und Zusammenarbeit 99

5 Zentrale Handlungsempfehlungen 100
5.1 Verstehen wir Innovationsunterstützung als ingenieurwissenschaftliche Mission im gleichgewichtigen Zusammenspiel von Lehre-Forschung-Technologietransfer der Hochschulen .. 100
5.2 Schaffen wir strukturelle und infrastrukturelle Rahmenbedingungen zur Stärkung des Innovationssystems unter Berücksichtigung der differenzierten Hochschul- und Forschungslandschaft Baden-Württembergs ... 101
5.3 Erhöhen wir die Anzahl und den Erfolg der Studentinnen und Studenten in Baden-Württemberg durch eine stärkere Berücksichtigung ihrer Heterogenität und Diversität und bilden wir sie zu fachlich kompetenten, sozial verantwortlichen und innovationsstarken Ingenieurinnen und Ingenieuren aus ... 103
5.4 Bringen wir Hochschulen, außeruniversitäre Forschungseinrichtungen und Unternehmen enger zusammen und kümmern wir uns gezielt um die Innovationsfähigkeit der KMU ... 104
5.5 Gestalten wir das Innovationssystem offen und dynamisch, bauen wir eine lebendige Gründerkultur auf und entwickeln wir die Hochschulen zu Gründerfluchten .. 105
5.6 Machen wir das Innovationssystem flexibler ... 105
5.7 Investieren wir klug in das Innovationssystem ... 106
5.8 Stellen wir uns dem Wettbewerb. Wir brauchen valide und robuste Kennzahlen als Grundlage für ein aussagekräftiges Monitoring der Innovationsfähigkeit und des Innovationsbeitrags der Hochschulen und Forschungseinrichtungen. 107
1 Einleitung

1.1 Ziel und Auftrag der Kommission

- der Dynamik des wissenschaftlich-technischen Fortschritts bestmöglich Rechnung getragen werden kann,
- die Hochschulen und Forschungseinrichtungen des Landes erfolgversprechend in nationalen, europäischen und internationalen Fördersystemen positioniert werden können und
- die Leistungs- und Wettbewerbsfähigkeit des Innovations- und Produktionsstandorts Baden-Württemberg im globalen Wettbewerb durch Profilbildung, Struktur- und Schwerpunktförderung der Ingenieurwissenschaften gesichert und verbessert werden kann.

Dabei sollte auch geprüft werden, welche spezifischen Bedürfnisse die Ingenieurwissenschaften – im Vergleich mit den anderen Disziplinen – haben, und wie diesen Bedürfnissen strukturell, infrastrukturell und ressourcenseitig Rechnung getragen werden kann, um ihre nationale und internationale Wettbewerbsfähigkeit langfristig zu sichern.

1.2 Methodik und Arbeitsweise

Die Kommission setzte folgende Arbeitsgruppen ein:

- Arbeitsgruppe „Lehre“ (Leiter: Herr Prof. Dr.-Ing. Dr. h.c. Winfried Lieber)
- Arbeitsgruppe „Forschung“ (Leiter: Herr Prof. Dr.-Ing. Dr. h. c. Albert Albers)
- Arbeitsgruppe „Transfer und Zusammenarbeit“ (Leiter: Herr Dr.-Ing. E.h. Manfred Wittenstein)

Im Interesse der Relevanz und der Praktikabilität der Empfehlungen führten sowohl die Arbeitsgruppen als auch die Kommission gegen Ende ihrer Beratungen **Sounding Boards** mit Fachleuten aus Wissenschaft und Wirtschaft durch, um eine inhaltliche Standortbestimmung vorzunehmen, ein kritisches Feedback zum Stand der Empfehlungen zu erhalten und Korrekturen vornehmen zu können.

1.3 Zusammensetzung

Voraussetzungen für jede **Innovation** sind eine **qualifizierte Lehre**, eine **leistungsfähige Forschung** und ein effizienter **Technologietransfer**. Bei der Zusammensetzung der 24 Mitglieder der Kommission aus Wissenschaft und Wirtschaft wurde deshalb den unterschiedlichen **Kulturen, Sichtweisen, Aufgaben und Interessen** der tragenden Partner des Innovationssystems in Baden Württemberg Rechnung getragen.

Der Kern der Arbeitsgruppen bestand jeweils aus Mitgliedern der Kommission. Diese ergänzten die Arbeitsgruppen um **Fachleute aus Wissenschaft und Wirtschaft**, um das gesamte Fächerspektrum der Ingenieurwissenschaften abzudecken und unterschiedliche Sichtweisen aus **Wissenschaft** und **Wirtschaft** einzubinden.
Mitglieder der Kommission:

Hr. Prof. Dr.-Ing. Dr. h. c. Albert Albers (Karlsruher Institut für Technologie)
Hr. Prof. Dr.-Ing. Thomas Bauernhansl (Universität Stuttgart; Fraunhofer-Institut für Produktionstechnik und Automatisierung (Vorsitzender der Kommission))
Hr. Dr. rer. pol. Dietrich Birk (Verband Deutscher Maschinen- und Anlagenbau Baden-Württemberg)
Hr. Dr.-Ing. Jörg Böcking (Freudenberg Gruppe)
Hr. Prof. Dr.-Ing. Martin Bossert (Universität Ulm)
Hr. Prof. Dr. Hendrik Brumme (Hochschule Reutlingen)
Hr. Dr. rer. nat. Klaus Dieterich (Robert Bosch GmbH)
Hr. Prof. Dr.-Ing. Herbert Dreher (Duale Hochschule Baden-Württemberg, Ravensburg)
Fr. Prof.in Dr. habil. Ursula Eicker (Hochschule für Technik Stuttgart)
Hr. Prof. Dr.-Ing. Matthias Kind (Karlsruher Institut für Technologie)
Hr. Prof. Dr. rer. nat. Alfred Leitenstorfer (Universität Konstanz)
Hr. Prof. Dr.-Ing. Dr. h.c. Winfried Lieber (Hochschule Offenburg)
Hr. Prof. Dr.-Ing. Detlef Löhe (Karlsruher Institut für Technologie)
Fr. Prof.in Dr. rer. nat. Britta Nestler (Karlsruher Institut für Technologie, Hochschule Karlsruhe Technik und Wirtschaft) (stellvertretende Vorsitzende der Kommission)
Fr. Prof.in Dr. rer. nat. Nejila Parspour (Universität Stuttgart)
Hr. Prof. Dr.-Ing. Dr. h.c. Oliver Sawodny (Universität Stuttgart)
Hr. Dr.-Ing. Kurt Schmalz (J. Schmalz GmbH)
Fr. Prof.in Dr. rer. pol. Dipl.-Ing. Meike Tilebein (Universität Stuttgart; Deutsche Institute für Textil- und Faserforschung Denkendorf)
Fr. Prof.in Dr.-Ing. Ulrike Wallrabe (Universität Freiburg)
Hr. Prof. Dr. rer. nat. Hans-Joachim Werner (Universität Stuttgart)
Hr. Dr.-Ing. E.h. Manfred Wittenstein (Wittenstein AG)
Hr. Prof. Dr.-Ing. Peter Woias (Universität Freiburg)
Fr. Prof.in Dr. rer. nat. Martina Zitterbart (Karlsruher Institut für Technologie)
Hr. Prof. Dr.-Ing. Thomas Zwick (Karlsruher Institut für Technologie)

Teilnehmerinnen und Teilnehmer des Sounding Boards der Kommission:

Hr. Prof. Dr. phil. Holger Burckhart (Universität Siegen)
Hr. Prof. Dr.-Ing. Joachim Frech (Duale Hochschule Baden-Württemberg)
Hr. Dr.-Ing. Gerhard Hammann (Trumpf Werkzeugmaschinen GmbH & Co. KG)
Hr. Prof. Dr.-Ing. Holger Hanselka (Karlsruher Institut für Technologie)
Hr. Prof. Dr. h.c. Bastian Kaiser (Hochschule für Forstwirtschaft Rottenburg)
Fr. Susanne Kunschert (Pilz GmbH)
Hr. Dr.-Ing. Ottmar Müller (Brand Group)
Hr. Prof. Dr. phil. Gunther Neuhaus (Uni Freiburg)
Hr. Prof. Dr.-Ing. Peter Post (Festo AG & Co. KG)
Hr. Prof. Dr.-Ing. Dr. h.c. Wolfram Ressel (Universität Stuttgart)
Fr. Anja Schneider (SAP)
Hr. Dr.-Ing. Klaus-Peter Schnelle (Robert Bosch GmbH)
Hr. Prof. Dr.-Ing. Günther Schuh (Rheinisch-Westfälische Technische Hochschule Aachen; Fraunhofer-Institut für Produktionstechnologie, Aachen)
Hr. Prof. Dr.-Ing. Dr. h.c. Dieter Spath (Wittenstein AG)
Fr. Uta Vogel (Hodapp GmbH)
Hr. Friedrich Vollmar (IBM Deutschland GmbH)
Hr. Thilo Weber (Verband Deutscher Maschinen- und Anlagenbau)
2 Die Ingenieurwissenschaften – Herkunft, Aufgaben und Perspektiven

2.1 Selbstverständnis der Ingenieurwissenschaften

Eine alte, auf Aristoteles zurückgehende Unterscheidung gliedert den Bereich wissenschaftlicher Betätigung in die theoretischen Wissenschaften, die praktischen Wissenschaften und die poietischen Wissenschaften. Während in dieser Struktur die Naturwissenschaften, als Prototyp für die theoretischen Wissenschaften, nach der Wahrheit und die Sozial- und Geisteswissenschaften als praktische Wissenschaften nach der Gerechtigkeit suchen, steht im Zentrum der Ingenieurwissenschaften die Schönheit. Doch warum ausgerechnet die Schönheit?

Blickt man ins 18. Jahrhundert, findet man bei Johann Beckmann folgende Definition von Wissenschaftlichkeit in der Technik:

„Technologie ist die Wissenschaft, welche die Verarbeitung der Naturalien, oder die Kertsch der Handwerke lehrt. Anstat daß in den Werkstellen nur gewiesen wird, ..., giebt die Technologie, in systematischer Ordnung, gründliche Anleitung, wie man zu eben diesem Endzwecke, aus wahren Grundsätzen und zuverlässigen Erfahrungen, die Mittel finden und die bey der Verarbeitung vorkommenden Erscheinungen erklären und nützen soll“.

Hier sind als Merkmale von Technologie (verstanden als Wissenschaft von der Technik) bereits wichtige Aspekte genannt, die auch heute noch eine Definition der Ingenieurwissenschaften enthalten sollte:

- Technologie zeichnet sich durch methodisches Vorgehen aus (systematische Ordnung).
- Technologie bezieht sich auf allgemeingültige Erkenntnisse auf empirischer Grundlage.
- Technologie dient einem Zweck, nämlich der effektiven Herstellung von Produkten.

Die Deutsche Akademie der Technikwissenschaften acatech legte im Impulspapier Technikwissenschaften: Erkennen – Gestalten – Verantworten aus dem Jahr 2013 eine Definition für die Technikwissenschaften vor, wobei sie zu den Technikwissenschaften neben den Disziplinen Maschinenbau, Elektrotechnik, Informatik und Bauingenieurwesen auch Disziplinen wie Technikgeschichte, Techniksoziologie und Technikfolgenabschätzung zählt:

„Technikwissenschaften schaffen kognitive Voraussetzungen für Innovation in der Technik und Anwendung technischen Wissens und legen die Grundlagen für die Reflexion ihrer Implikationen und Folgen“5.

Die Kommission Ingenieurwissenschaften@BW2025 greift die Aspekte Erkennen, Gestalten und Verantworten auf und ergänzt sie um den Aspekt der institutionellen Verankerung, der insbesondere im Hinblick auf ihre Zielsetzung besonders wichtig ist. Sie schlägt folgende Definition der Ingenieurwissenschaften vor:

Die Ingenieurwissenschaften dienen der Gesellschaft durch Erkennen und Gestalten technischer Möglichkeiten mit Hilfe von spezifischen Methoden. Sie sind institutionalisiert in sich beständig wandelnden, eigenständigen Disziplinen.

Ingenieurwissenschaften dienen der Gesellschaft. Das heißt, dass sie zweckorientierte Wissenschaften sind, die sich am Anwendungszusammenhang orientieren, für den sie technische Lösungen erarbeiten. Es bedeutet aber auch, dass sie Folgen von Technologie verantworten und der Gesellschaft Rechenschaft über ihr Handeln schuldig sind.

Neben dem für alle Wissenschaften wichtigen Erkenntnisaspekt hat das Gestalten für die Ingenieurwissenschaften eine herausragende und einzigartige Bedeutung. Die spezifischen Methoden der Ingenieurwissenschaften beziehen sich daher zu etwa gleichen Teilen auf erkennende, analysierende sowie auf gestaltende, synthetisierende Tätigkeiten. Der Hinweis auf die Institutionalisierung von sich beständig wandelnden, eigenständigen Disziplinen zeichnet ein historisches Faktum nach, beinhaltet aber gleichzeitig auch die Mahnung, den Wert der Wandlungs- und Anpassungsfähigkeit der Ingenieurwissenschaften zu würdigen und für die Zukunft sicherzustellen. Die Ingenieurwissenschaften müssen – und das deutlich mehr als andere Disziplinen – agil und flexibel sein, um auf die sich zunehmend schneller ändernden Anforderungen der Gesellschaft mit konkreten Lösungen reagieren zu können. Dies schließt auch ein, jenseits und zwischen den heute fest verwurzelten Disziplinen

Die herausgehobene Bedeutung des Gestaltungsaspektes für die Ingenieurwissenschaften wirkt sich aber auch auf weitere Bereiche aus. Das klassische Denkmuster, das zwischen disziplinärer Grundlagenforschung und oft interdisziplinärer anwendungsorientierter Forschung unterscheidet, trifft für die Ingenieurwissenschaften immer weniger zu. Das Ziel ingenieurwissenschaftlicher Forschung liegt im Hervorbringen nutzbringender Lösungen, so dass Grundlagenforschung im Sinne von Forschung, die sich um ihre spätere Verwertbarkeit keine Gedanken zu machen braucht, in den Ingenieurwissenschaften kaum mehr existiert.

Die Pole Erkennen und Gestalten spannen das Betätigungsfeld der Ingenieurwissenschaften auf. Der Zweck, Artefakte und weitere Lösungen für die Gesellschaft bereitzustellen, legitimiert ihr Handeln. Die damit verbundene gesellschaftliche Verantwortung übernehmen die Ingenieurwissenschaften in dreierlei Hinsicht:

- Zweitens in der Lehre mit der Vermittlung relevanten technischen Wissens sowohl an junge Menschen zur Erstausbildung als auch zur berufsbegleitenden Weiterbildung.
- Drittens durch den Technologietransfer mit der gezielten Überführung innovativen technischen Wissens in die Industrie, die erst durch die daraus entwickelten Produkte jene technischen Möglichkeiten verwirklicht, die von den Ingenieurwissenschaften zuvor grundsätzlich erschlossen worden sind.
2.1 Selbstverständnis der Ingenieurwissenschaften

Im Aspekt des Erkennens sind die Ingenieurwissenschaften den Naturwissenschaften dabei am ähnlichsten. Sie greifen ebenso auf empirische Versuche zurück, mit denen sie Wissen über technologische Gesetze und technische Regeln erzeugen und die sie zum Teil auch normativ kodifizieren (vgl. Deutsches Institut für Normung [DIN], VDI). Diese sind aber weniger wahrheitsdefinit im Sinne von wahr und falsch wie bei den Naturwissenschaften als vielmehr effektiv oder nicht effektiv, so dass in den Ingenieurwissenschaften neben den Wahrhaftigkeitsbegriffen der Naturwissenschaften Wirklichkeitsbegriffe erscheinen. Im Gegensatz zu den Naturwissenschaften ist es für ingenieurwissenschaftliche Forschung daher nicht ausreichend, theoretische Erkenntnisse zu erzielen. Es wird stets von ihr verlangt, konkrete, gesellschaftliche Problemstellungen zu adressieren, was ihre volkswirtschaftliche Relevanz angesichts der kürzeren Innovations- und Technologiezyklen bereits gesteigert hat und künftig weiter steigern wird.

Ferner führt die Dimension des zweckhaften Dienstes an der Gesellschaft dazu, dass ingenieurwissenschaftliche Fragestellungen zunehmend anders gestellt und anders bearbeitet werden müssen. Neben technisch-funktionalen Realisationsbedingungen (Materialeigenschaften, Fertigung, Montage, Zuverlässigkeit) sind auch anwendungsbezogene (Ergonomie, Wartung, Recycling), ästhetische (Design), ökonomische (Kosten) und gesellschaftspolitische (Technikbewertung, Sicherheit) wie auch soziotechnische (Akzeptanz, Nutzbarkeit) Kriterien zunehmend zu berücksichtigen.

Dies erfordert die Nachbildung und Simulation komplexer, realer Kontexte, weshalb die Ingenieurwissenschaften auf moderne Forschungsfabriken, Demonstrationszentren und Lernfabriken, häufig im Maßstab 1:1, zurückgreifen. Es ist dabei unabdingbar, dass sich die ingenieurwissenschaftliche Forschungsinfrastruktur jeweils auf dem aktuellen Stand der Technik befindet. Denn: Nur wenn ingenieurwissenschaftliche Forschung in der Lage ist, schnell auf aktuelle Entwicklungen zu reagieren und künftige zu antizipieren, kann auch der Technologietransfer, der den wichtigsten Kanal von den Inventionen der Ingenieurwissenschaften zu gesellschaftlich und volkswirtschaftlich wirksamen Innovationen darstellt, rasch genug erfolgen.

Dem Gestaltungsaspekt wird allerdings durch häufig verwendete Leistungsindikatoren zur Evaluierung wissenschaftlicher Leistungsfähigkeit unzureichend Rechnung getragen. Leistungsindikatoren, die nur die erkenntnisorientierte Bedeutung der Forschung messen, führen zu Fehlsteuerungen in den Ingenieurwissenschaften, da sie die herausgehobene Bedeutung des Gestaltungsaspektes für die Ingenieurwissenschaften nicht darstellen. In diesem Kontext wird die aktuelle Tendenz, bei Berufungen auf ingenieurwissenschaftliche Lehrstühle vorrangig erkenntnisorientierte Leistungskriterien zu Grunde zu legen, kritisch gesehen. Insbesondere bei ingenieurwissenschaftlichen Fächern und Fachrichtungen, in denen der Gestaltungsaspekt eine hohe Bedeutung hat – wie beispielsweise in der Produktentwicklung oder der Produktionstechnik –, müssen gestaltungsorientierte Kriterien und Leistungsindikatoren bei Berufungsverfahren angemessen berücksichtigt werden. Dies kann
zum Beispiel die **einschlägige Praxiserfahrung** von Bewerberinnen und Bewerbern in Unternehmen oder ihre Mitwirkung bei der Erarbeitung von **Patenten** und anschließenden **Lizenzierungsverfahren** sein. Vor allem Bewerberinnen und Bewerbern mit **Industriehintergrund** ist im Allgemeinen der EignungsNachweis über publikationsbasierte Indikatoren ohnehin nicht möglich, da ihnen Veröffentlichungen von aktuellen und relevanten Ergebnissen von ihren Arbeitgebern aus wettbewerblichen Gründen nicht gestattet werden.

Für alle Professorinnen und Professoren in den Ingenieurwissenschaften – unabhängig von ihrem jeweiligen Background – sollte nach der Berufung ohne Zweifel eine adäquate **Veröffentlichungsleistung** unabhängig von der Fachrichtung selbstverständlich sein. Dennoch ist auch bei der Evaluierung wissenschaftlicher Leistungsfähigkeit nach der Berufung die für die jeweilige Fachrichtung adäquate Berücksichtigung **gestaltungsorientierter Leistungsindikatoren** notwendig.

2.2 Ingenieurinnen und Ingenieure – Aufgaben und Rollen

In Deutschland arbeiteten 2014 fast **1,7 Millionen** Ingenieurinnen und Ingenieure. Der **Frauenanteil** liegt bei etwa **14 Prozent**. Die Hälfte ist in einem traditionellen Ingenieurberuf tätig. Die übrigen arbeiten in anderen Bereichen, etwa an **Hochschulen**, im **Management** oder im **Vertrieb**. Auch in der **staatlichen Verwaltung** kommen Ingenieurinnen und Ingenieure zum Einsatz, etwa in **Bauämtern** und **Prüfbehörden**. Als **Beraterinnen** und **Berater** entwickeln sie Lösungen für technische Fragestellungen.

Wenn – wie oben definiert – die Ingenieurinnen und Ingenieure der Gesellschaft dienen, dann müssen sie auch die Trends der Gesellschaft kennen und aufnehmen. Wenn sie gestalten, dann muss ihnen klar sein, dass ihre Arbeit die Gesellschaft positiv wie negativ beeinflusst. Damit müssen sie verantwortlich umgehen und zum Beispiel auch **Technikfolgenabschätzung** betreiben.

Ingenieurinnen und Ingenieure können nicht mehr einfach machen, was möglich ist, sondern sollten das tun, was **gesellschaftlich vertretbar** ist und was tatsächlich einen **Dienst an der Gesellschaft** darstellt. Dies wird zu einer Herausforderung, denn der Spagat zwischen **technologischen Möglichkeiten**, **gesellschaftlicher Akzeptanz** und **sinnvoller, ethisch vertretbarer Realisierung** wird größer. Die **Meinungsvielfalt** in der Gesellschaft und die **wachsende Komplexität** der Lösungen erschweren die **Kommunikation**. **Technikfolgenabschätzung**, **Techniksoziologie** und **Technikethik** werden relevanter in Lehre, Forschung und Technologietransfer.

Die Ingenieurwissenschaften stehen in der **Mitte der Gesellschaft** und sollen in ihrer Struktur ihr Spiegel sein. Das zielt beispielsweise auf den **Frauenanteil** im technischen Bereich, die zugehörigen Genderfragen sowie weitere Aspekte der Diversität. Die Ideenvielfalt, die sich etwa aus einer **kulturellen Vielfalt** an Ingenieurabsolventinnen und -absolventen ergibt, bietet eine **enorme Chance** für Baden-Württemberg. Sie zu nutzen, erfordert allerdings viel Engagement. Die starke **Zuwanderung** gut vorgebildeter, junger Menschen wird zu einem **Gewinn für unser Land**, wenn wir sie rasch integrieren können. Beispielsweise indem wir die Anforderungen für die Aufnahme einer Arbeit, eines Studiums oder einer Ausbildung herabsetzen. **Spezielle Studiengänge** oder der **Zugang zu unseren Hochschulen** für Bewerberinnen und Bewerber mit angepassten Anforderungen an die **Hochschulzugangsberechtigung** (HZB) können hier hilfreich sein.

2.3 Institutionalisierung im Spannungsfeld von Inter- und Transdisziplinarität

2.3.1 Institutionalisierung der Ingenieurwissenschaften

Im Rahmen der 4. Industriellen Revolution, welche die Digitalisierung und Vernetzung der Wertschöpfung bedeutet, entstehen nun neue Studiengänge und Fachgebiete, was mitteleuropäisch ebenfalls Veränderungen in der Fächersystematik herbeiführen wird.
Disziplinen

Die Ingenieurwissenschaften sind heute in fachliche Disziplinen gegliedert. Da diese Disziplinen nur über eine gewisse Zeitdauer und Kontinuität wirksam werden können, müssen sie in eigenständigen Einrichtungen (Ingenieurschulen, Hochschulen, außer-universitäre Forschungseinrichtungen) institutionalisiert sein. Die Expertenkommission zählt gemäß der Gliederung der DFG folgende Fachdisziplinen zu den Ingenieurwissenschaften21:

- Produktionstechnik
- Mechanik und Konstruktiver Maschinenbau
- Verfahrenstechnik, Technische Chemie
- Wärmeenergietechnik, Thermische Maschinen, Strömungsmechanik
- Werkstofftechnik
- Materialwissenschaft
- Systemtechnik
- Elektrotechnik
- Informatik
- Bauwesen und Architektur

2.3.2 Interdisziplinarität und Transdisziplinarität

Es ist bisher nicht gelungen, aus den interdisziplinären Studiengängen wirkliche interdisziplinäre Forschung zu generieren. Dies ist ein generelles Problem, so gibt es zum Beispiel im Wirtschaftsingenieurwesen bis heute keine gemeinsamen Denkschulen und Paradigmen der Betriebswirtschaftslehre und der Produktionstechnik.

Während interdisziplinäre Arbeit auf ein Mehr an Erkenntnis setzt, zielt transdisziplinäre Arbeit auf andere Erkenntnisse, indem sie gesellschaftliche und lebensweltliche Problemstellungen einbezieht. Da die Ingenieurwissenschaften der Gesellschaft dienen, liegt hier für sie ein besonderer Fokus. Transdisziplinäre Forschung liefert Beiträge zur Lösung gesellschaftlich relevanter Probleme. Sie ist dabei nicht nur interdisziplinär und vernetzt unterschiedliche Wissenschaftsdisziplinen, sondern sie bezieht auch die nicht-wissenschaftlichen Akteure eines Handlungsfeldes in ihre Forschung ein, um umsetzbare Handlungsempfehlungen zu erarbeiten22.

Im Sinne der Einheit von Forschung und Lehre muss zukünftig ein breites Angebot an inter- und transdisziplinärer Lehre gemacht und es müssen die Strukturen für eine entsprechende inter- und transdisziplinäre Forschung geschaffen werden. Es fehlt heute beispielsweise ein DFG-Fachgebiet für Wirtschaftsingenieurwesen, für Produktionsinformatik oder auch für Medizintechnik.

Insbesondere an den Grenzen der verschiedenen Wissenschaften (Sozial-, Natur-, Ingenieurwissenschaften) herrschen unterschiedliche Denkschulen mit unterschiedlichen Forschungsinteressen. Während Ingenieurinnen und Ingenieure sehr zweck-
orientiert arbeiten (um etwas zu erreichen, etwa eine Maschine zu bauen), arbeiten die Naturwissenschaften erkenntnisorientiert (sie suchen die Wahrheit) und die Sozialwissenschaften sehr erklärungsorientiert (sie gestalten nicht, sondern beschreiben – in der Regel retrospektiv – Phänomene aufgrund von statistischen Auswertungen mit dem Ziel, soziale Phänomene zu erklären und damit die Grundlagen für „Gerechtigkeit“ herauszuarbeiten).

Zukünftig führen beispielsweise die Digitalisierung oder auch die Vielfalt der sich durch die mit den Materialwissenschaften ergebenden Möglichkeiten dazu, dass man Forschung interdisziplinär angehen muss, weil es sonst nicht zu tragfähigen, der Gesellschaft wirklich dienenden systemischen Lösungen kommt. Deshalb ist es wichtig, gemeinschaftlich interdisziplinäre Fachgebiete aufzubauen und zu institutionalisieren. Es gibt beispielsweise an der ETH Zürich oder auch an der University of Manchester ausgebauten Ansätze einer solchen interdisziplinären Forschungskultur.

Die Kommission sieht hier in Deutschland und Baden-Württemberg eine große Schwäche, weil es in den letzten Jahren nicht gelungen ist, Disziplinen, die sich in der Lehre etabliert haben, in Wissenschaftsdisziplinen zu überführen. Interdisziplinarität scheitert immer dort, wo man es nicht schafft, sich auf gemeinsame Paradigmen, das heißt ein gemeinsames Verständnis über das Forschungsobjekt, zu einigen oder zumindest ein tiefes Verständnis für die jeweiligen Denkschulen der korrespondierenden Disziplin zu entwickeln. Auch ein gemeinsames Verständnis der Wissenschaftsmethodik, also darüber, wie generell Wissenschaftsprozesse abzulaufen haben, ist hier essentiell.

2.4 Position im deutschen Innovationssystem

Forschung und Entwicklung (FuE), das Ableiten von Innovationen und deren erfolgreiche Etablierung am Markt ist ein komplexes Unterfangen. Fachleute versuchen diese Komplexität mit dem Begriff und der Systematik eines Innovationssystems zu fassen. Es umfasst zunächst sämtliche Akteure, die am Erzeugen, Verbreiten und Anwenden wissenschaftlichen und technischen Wissens beteiligt sind, also Regierungen und deren Repräsentantinnen und Repräsentanten, Hochschulen und deren Forscherinnen und Forscher, Unternehmen und deren Entwicklerinnen und Entwickler. Entscheidend für ein funktionierendes Innovationssystem sind der Austausch, die Kooperation und der Wissenstransfer zwischen diesen Akteuren.

Der Innovationsprozess ist zunächst ein einfacher: Am Anfang stehen FuE in Hochschulen und Unternehmen. Durch Kooperationen, Austausch von Mitarbeiterinnen und Mitarbeitern sowie Patente wird Wissen hin und her transferiert und immer weiter
2.4 Position im deutschen Innovationssystem

verfeinert. Im Ergebnis kommt schließlich eine technische Innovation auf den Markt. Doch so ganz einfach ist das nicht. Die Politik setzt den Rahmen für die Forschung an Hochschulen. Das kann Innovationen hemmen oder fördern. Die Gesellschaft fordert Techniken (etwa im Verkehr) oder lehnt Innovationen ab.

Die Ingenieurwissenschaften stehen mitten drin. Ingenieurinnen und Ingenieure arbeiten in Behörden, in Hochschulen, in Unternehmen. Sie haben das Know-how, die Forschung mit langen Zeithorizonten in Produkte zu veredeln oder bei Bedarf die Grundlagen selbst zu legen. Ferner müssen sie, und das ist eine der Empfehlungen dieses Berichts, stärker als bisher im Austausch mit der Gesellschaft das Für und Wider bestimmter Techniken erörtern und dies als Anregung wieder ins Innovationsystem zurückspielen.

Universitäten – Fachhochschulen/Hochschulen für Angewandte Wissenschaften – Duale Hochschule Baden-Württemberg

Insgesamt gibt es hunderte Hochschulen mit tausenden Studiengängen im Bereich Ingenieurwesen in Deutschland. Allein Maschinenbau kann man an fast 230 Hochschulen unterschiedlicher Ausprägung in Deutschland studieren.

Mit der Änderung des Abschlusses auf den international anerkannten Bachelor/Master haben sich die deutschen Ingenieurwissenschaften international aufgestellt. Nun

Außeruniversitäre Forschungseinrichtungen

2.5 Stellung im globalen Kontext

2.5.1 Vorbild Baden-Württemberg

2.5.2 Stellung der Ingenieurinnen und Ingenieure in der Gesellschaft

2.5 Stellung im globalen Kontext

2.5.3 Technologietransfer macht den Unterschied

Ingenieurinnen und Ingenieure haben in Deutschland eine herausragende Position, weil die Exporte (sowie Innovationskraft und Produktivität) auf ingenieurwissenschaftlichen Leistungen basieren. An europäischen Statistiken ist ablesbar, dass Länder mit wenig beschäftigten Ingenieurinnen und Ingenieuren je 100 Erwerbstätige (zum Beispiel Norwegen, Großbritannien, Spanien) auch eher wenig Geld in die Forschung investieren43.

Der Anteil der unternehmensfinanzierten Ausgaben für FuE in Hochschulen weltweit weist eine hohe Bandbreite auf. Er lag 2013 zwischen 2,7 Prozent in Frankreich und 14,2 Prozent in Deutschland44. Dieser Indikator bildet einen bedeutenden Teil der formalen Technologietransferaktivitäten zwischen Hochschulen und Unternehmen ab. Deutschland spielt hier eine führende Rolle und nimmt die Spitzenposition ein. Demgegenüber haben die USA, die bezüglich Wissenschafts- und Technologietransfer als besonders erfolgreich gelten, nur einen Wirtschaftsfinanzierungsanteil der FuE-Aufwendungen im Hochschulsektor von 4,8 Prozent und liegen im Bereich von Großbritannien und Österreich. Korea erreicht mit 12,3 Prozent ebenfalls hohe Wirtschaftsfinanzierungsanteile45. Der FuE-Anteil am Bruttoinlandsprodukt (BIP) beträgt in Frankreich 2,2 Prozent, in Großbritannien 1,7 Prozent und in Deutschland 3,0 Prozent. Baden-Württemberg liegt mit 4,8 Prozent weit über dem bundesweiten Durchschnitt46. In China beträgt er 2,1 Prozent, in den USA 2,8 Prozent47 und in Südkorea 4,4 Prozent48.

Hochschulen sind innerhalb der Kooperationsnetzwerke von innovativen Unternehmen in Deutschland und Österreich besonders häufig vertreten. Über die Hälfte der innovativen Unternehmen mit Kooperationsbeziehungen haben im Rahmen von Innovationsprojekten Kooperationen mit Hochschulen durchgeführt, während dies in Großbritannien für jedes dritte Unternehmen und in Frankreich nur für jedes vierte Unternehmen zutrifft53.

In Baden-Württemberg liegt die Häufigkeit von Unternehmens-/Hochschulkоорoprationen noch deutlich über dem deutschen Durchschnitt. Drei Viertel der vom ZEW für den vorliegenden Abschlussbericht befragten Unternehmen unterhalten Kooperationen bei Innovationsprojekten mit Hochschulen und genauso viele mit außeruniversitären Forschungsinstituten54.
Die prägenden Trends der nächsten zwei Dekaden werden aus einer Studie des Fraunhofer ISI über die Ergebnisse des aktuellen BMBF-Foresight-Prozesses referiert, an dem das Institut beteiligt war. Davon leiten sich die Chancen und Herausforderungen für die Ingenieurwissenschaften in Baden-Württemberg ab, außerdem die charakteristischen Merkmale, was die Ingenieurin und den Ingenieur der Zukunft ausmacht.

3.1 Die Welt im Jahr 2025

3.1.1 Megatrends

Megatrends im Bereich Gesellschaft

Das weltweite Bevölkerungswachstum, die Abnahme landwirtschaftlicher Nutzungsflächen, der Klimawandel, die Ressourcenverknappung und die Ausdehnung von Siedlungsflächen gefährden in vielen Regionen der Erde die Ernährungssicherheit. Prognosen gehen davon aus, dass im Jahr 2030 immer noch mehr als 500 Millionen Menschen auf der Welt an Unterernährung leiden.

Gleichzeitig erwarten Fachleute in der kommenden Dekade eine globale Bildungs-
expansion. Immer mehr Menschen tummeln sich gut ausgebildet und befähigt zu
wissensintensiven Tätigkeiten auf einem globalen Arbeitsmarkt. Dieser Trend
wird verstärkt durch den Einsatz von Informations- und Kommunikationstechnolo-
gien (IKT), so dass die globale Wissensgesellschaft von neuen Formen der globalen
Zusammenarbeit, aber auch von mehr Wettbewerb geprägt sein wird. Wissen – als
Gut und damit quasi handelbare Ware – entwickelt sich im Spannungsfeld sinkender
Transaktionskosten und nahezu unbegrenzter Verfügbarkeit andererseits und seiner
Kommerzialisierung mit neuen Konzepten und Ansprüchen an Nutzungs- und Eigen-
tumsrechten andererseits. Die durch die stärkere Vernetzung und Digitalisierung in
allen Lebensbereichen entstehenden Konflikte verändern mittelfristig das gesell-
schaftliche Verständnis vonPrivatsphäre, Autonomie und Kontrolle von Systemen
sowie das Mensch-Technik-Verhältnis. Konfliktpotenzial haben beispielsweise die
Datensicherheit und der mögliche Missbrauch von vertraulichen Daten und Nutzer-
profilen sowie der offensichtliche Kontrollverlust über persönliche Daten und autono-
me Computersysteme.

Der steigende globale Bedarf an wissenschaftlich fundiertem Wissen und an wis-
sensintensiven Gütern und Dienstleistungen sowie die zunehmende Nutzung von
digitalen Publikationsformen und massiven Datenbeständen (Big Data) ruft ver-
schiedene Trends in der Wissenschaft hervor, die im Schlagwort Science 2.0
zusammengefasst werden. Bereits heute ist eine Diversifizierung und Differenzie-
 rung der Wissenschaft bei neuen Formen von Lehr-, Forschungs- und Publikations-
aktivitäten zu beobachten. Neue Akteure treten auf den Plan. Die staatlich geförder-
ten Hochschulen und Forschungseinrichtungen in Deutschland konkurrieren nicht
nur national, sondern auch global mit privaten Hochschulen, Schulungs- und Ber-
tungsunternehmen sowie von Privatpersonen betriebenen Forschungseinrichtun-
gen. Auch fördern weltweit immer mehr Stiftungen Forschung. Insgesamt wird
es langfristig zu einer Kommerzialisierung von FuE auf globalen Wissensmärkten
kommen, worauf sich die Ingenieurwissenschaften und Unternehmen einstellen
müssen.

Neben Bevölkerungswachstum, Ernährungskrisen und wachsender sozialer Ungleichheit
verstärken politische Krisen, Terrorismus und militärische Auseinanderset-
zungen die Migration auf globaler Ebene. Das kann langfristig zu einer Margina-
lisierung und Prekarisierung gesellschaftlicher Teilgruppen und zu einem Rückgang
gesellschaftlichen Engagements führen. Eine Zunahme lokaler und globaler Kon-
flikte fordert Unternehmen mit weltweit verteilten Produktionsstandorten und Koope-
rationspartnern heraus.

Megatrends im Bereich Wirtschaft

China und Indien machen sich auf den Weg zu führenden Standorten im globalen
Innovationswettbewerb. Schwellenländer wie Korea, Malaysia, Thailand und Singa-
pur entwickeln sich zu neuen Innovationszentren. Auch in einigen Ländern Afrikas
wächst die Wirtschaft deutlich, so dass sich globale Investoren auch dort engagie-
ren. Die für Schwellenländer typischen Frugalen Innovationen sind dabei die Grund-
lage für Innovationen trotz begrenzter Ressourcen und knappem Kapital. Ihre Prinzi-
pien werden auch für das Innovationsmanagement deutscher Industrieanstalten
wichtiger, insbesondere wenn sie sich in diesen Ländern auf Märkten oder mit Produk-
tionsstätten engagieren. Während die USA und andere westliche Industriestämme
der Konkurrenz mit einer Strategie der Reindustrialisierung begegnen, entwickeln
die deutsche Wirtschaft unter dem Begriff Industrie 4.0 neue Ansätze für die Produk-
tion und Dienstleistungen von morgen.

3.1 Die Welt im Jahr 2025

Megatrends im Bereich Ökologie

Eine weitere Folge des Klimawandels ist die zunehmende globale Wasserknappheit, die durch Fehlverhalten und Fehlallokation noch verstärkt wird. Bis zum Jahr 2030, so Prognosen, werden fast 50 Prozent der Weltbevölkerung in Regionen mit Wasserknappheit leben.

Megacity

Definiert eine Stadt mit mehr als 10 Millionen Einwohnern.

Megatrends im Bereich Technologie

Die Verbindung des Internet der Dinge mit den Ansätzen für Industrie 4.0 wird die Wettbewerbsfähigkeit der Unternehmen erheblich beeinflussen. Bis 2025 und darüber hinaus steigt der Bedarf an Systemen zur Entscheidungsunterstützung auf Basis von Informationsgewinnung und -analyse sowie an autonomen Systemen deutlich. Einsatzfelder sind zum Beispiel Produktionsumgebungen, die Energieversorgung, Krankenhäuser oder der Straßenverkehr.

3.1 Die Welt im Jahr 2025

und Datensicherheit notwendig, so dass die Realisierung nicht auf reine Technologie-entwicklung beschränkt bleibt\(^9\).

3.1.2 Chancen und Herausforderungen für die Ingenieurwissenschaften

Es besteht ein wachsender Bedarf an innovativen Plattformen für angewandte Forschung, wie sie beispielsweise in Reallaboren oder sogenannten Living Labs erprobt werden. Sie fördern nicht nur den Wissenstransfer aus der Wissenschaft in die Praxis, sondern durch partizipative Methoden der Forschung auch die Einbindung des Wissens unterschiedlicher Stakeholder, insbesondere der Bürgerinnen und Bürger. Daraus resultieren steigende Anforderungen an die Ingenieurinnen und Ingenieure, ihre Kommunikations- und Kooperationsfähigkeit mit unterschiedlichen gesellschaftlichen Gruppen zu verbessern. Für die Ingenieurwissenschaften bedeutet dieser Trend, dass die Anforderungen an interkulturelle Kompetenzen und Diversitätsaspekte steigen. Somit ist es wichtig, einerseits die neuen Bedarfe einer pluralen Gesellschaft frühzeitig zu erkennen und zu adressieren und andererseits die Aus- und Weiterbildung von Fachkräften entsprechend den globalen Anforderungen und soziodemo-
Die Welt im Jahr 2025

3.1 Die Welt im Jahr 2025

grafischen Gegebenheiten am Standort weiterzuentwickeln sowie Gründergeist und Unternehmertum schon an den Hochschulen zu vermitteln.

Zur Stärkung der Ingenieurwissenschaften eignen sich inter- bzw. transdisziplinär ausgerichtete Forschungsprojekte und Verbundvorhaben unter Einbeziehung der Geistes- und Sozialwissenschaften sowie von Stakeholdern (Bürgerinnen und Bürger, kommunale Entscheiderinnen und Entscheider, lokale Unternehmen). Die Ingenieurinnen und Ingenieure müssen darin die Erkenntnisse zum gesellschaftlichen Wandel (etwa neue Bedarfe durch Megacities), die Konsummuster und die kulturellen Besonderheiten (etwa das Mensch-Technik-Verhältnis) in der Forschung berücksichtigen. In diesem Zusammenhang können faire und sozialverantwortliche Produktionsbedingungen und eine nachhaltige und ressourcenschonende Wertschöpfung an Bedeutung gewinnen. Unternehmen und das Land können hier mit einer klugen Innovationspolitik eine Vorreiterrolle einnehmen und weltweite Qualitätsstandards voranbringen, die den hohen Ansprüchen der Ingenieurwissenschaften genügen.

Die Ingenieurwissenschaften sind von den ökologischen Megatrends in mehrfacher Hinsicht betroffen: Zum einen sind die Fragestellungen und Probleme äußerst komplex, wie etwa beim Klimawandel. Neben anderen Fachdisziplinen sind hier gerade
die Ingenieurwissenschaften aufgerufen, Lösungen anzubieten. Neue Märkte können hier entstehen, etwa im Bereich der „Smart Cities“. Zum anderen können ein neues Wachstumverständnis und ein gesamtgesellschaftlicher Wertewandel die Tätigkeit von Ingenieurinnen und Ingenieuren in Forschung, Lehre und Industrie auf vielfältige Weise verändern.

Für die Ingenieurwissenschaften lassen sich aus den beschriebenen Entwicklungen drei grundsätzliche Tendenzen ableiten:

- Erstens ist von einer steigenden Nachfrage nach Ingenieurwissen auszugehen, um komplexe Systeme zu entwickeln, die Energie- und Ressourceneffizienz zu optimieren und damit die globale Wettbewerbsfähigkeit der Industrie zu sichern.
- Drittens entwickelt sich das Forschungssystem in Richtung kollaborativer, stärker bedarfsorientierter Forschung und Entwicklung, sowohl an den Schnittstellen von Fachdisziplinen als auch zwischen Wissenschaft und Industrie sowie Gesellschaft.

3.1.3 Chancen und Herausforderungen für das Ingenieurland Baden-Württemberg

Die Megatrends haben eine hohe Bedeutung für die Ingenieurwissenschaften in Baden-Württemberg. Themen wie Demografischer Wandel, Globalisierung/Individualisierung, Digitalisierung/Big Data, Ressourcenknappheit/Nachhaltigkeit/Energie/Mobilität sowie Materialwissenschaften und neue Produktionstechnologien werden das ingenieurwissenschaftliche Denken und Handeln verändern.

Demografischer Wandel

Deutschlandweit übertraf die Arbeitskräftennachfrage das Arbeitskräfteangebot in den Ingenieurberufen im zweiten Quartal 2015 um 117 Prozent. Im Vergleich zum Vorjahresquartal lag diese Engpasskennziffer knapp 5 Prozent höher. Es gibt einen jährlichen Ersatzbedarf von rund 40.000 Ingenieurinnen und Ingenieuren in Deutschland. Aufgrund des vom VDI geschätzten jährlichen Expansionsbedarfs von rund 40.000 Ingenieurinnen und Ingenieuren müssten die deutschen Hochschulen „jedes Jahr Ingenieurabsolventen im Umfang von aktuell etwa 5,4 bis 5,9 Prozent des Erwerbsbestands hervorbringen, was mindestens 90.000 Erstabsolventen entspricht“. Daher kann der jährliche Gesamtbedarf mit den aktuellen Zahlen der Absolventinnen und Absolventen der Hochschulen nicht gedeckt werden. Mittelständische Unternehmen werden also bald Probleme haben, Ingenieurpositionen zu besetzen.

Aufgrund des drohenden Fachkräftemangels müssen die Willkommenskultur in Baden-Württemberg für qualifizierte Fachkräfte fortentwickelt und die Integrationsfähigkeit beider Seiten gestärkt werden. Ingenieurinnen und Ingenieure – vor allem
3.1 Die Welt im Jahr 2025

die starken Industriezweige wie Automobilindustrie, Maschinenbau, Chemie und Elektroindustrie – müssen in der Lage sein, in internationalen, interkulturellen und interdisziplinären Teams zu arbeiten.

Globalisierung/Individualisierung

Die exportstarke Industrie in Baden-Württemberg muss Lösungen für globale Herausforderungen anbieten, auch unter Berücksichtigung der zahlreichen ausländischen Standorte baden-württembergischer Unternehmen, die häufig notwendig sind, um marktnah zu entwickeln und zu produzieren.

Der globale Wettbewerb um Wertschöpfung nimmt zu. Die frühzeitige Einbindung von Kundinnen und Kunden bei der individualisierten und personalisierten Produktenentstehung ist zukünftig entscheidend. Man wird es sich immer weniger leisten können, technologiegetrieben zu entwickeln und darauf zu hoffen, dass die Kundinnen und Kunden die Produkte kaufen werden und der Markt dazu von alleine entsteht.

Ressourcenknappheit/Nachhaltigkeit/Energie/Mobilität

Die Nachfrage der Industrie nach ingenieurwissenschaftlichem Wissen im Bereich Energie- und Ressourceneffizienz wird verstärkt den baden-württembergischen Mittelstand erreichen und den Innovationsdruck insbesondere im verarbeitenden Gewerbe erhöhen. Für Ausbildung und Forschung bedeutet dies, dass eine ingenieurwissenschaftliche Grundkompetenz in benachbarten Fachdisziplinen stärker integriert und innerhalb der Ingenieurwissenschaften die Spezialisierung auf Querschnittstechnologien wie IKT, Energiesystemtechnik, Mikrosystemtechnik, Nanotechnologie, Photonik oder Materialwissenschaften und Biotechnologie ausgebaut werden müssen.

Digitalisierung/Big Data

Wissenschaft und Wirtschaft Baden-Württembergs sind bei der Entwicklung und Umsetzung der Industrie 4.0 vorne dabei. Sie müssen diese führende Rolle in den kommenden Jahren aber sichern und weiter ausbauen.

Im Bereich **Virtuelle Realität/Simulation** müssen die Ingenieurwissenschaften die führende Position des Standorts weiter ausbauen, zum Beispiel für die **echtzeitoptimierte Simulation** und Virtualisierung hoch vernetzter Modelle und für die Analyse und Nutzung immer größerer und komplexerer Datenmengen.

Materialwissenschaften und neue Produktionstechnologien

In vielen für die Ingenieurwissenschaften in Baden-Württemberg relevanten Technologiefeldern zeichnet sich bis zum Jahr 2025 und darüber hinaus ab, dass sie durch die **Verknüpfung** der Technologiebereiche untereinander Lösungspotenziale für zukünftige, globale Herausforderungen bieten. Dabei haben die **Materialforschung** und neue Productionstechnologien strategische Bedeutung für den Innovationsstandort Baden-Württemberg.

Für die baden-württembergischen Ingenieurwissenschaften öffnen sich auch in der **Photonik** neue Felder, die den Unternehmen Wettbewerbsvorsprünge verschaffen. Die heute bereits gut aufgestellte Wissensbasis in der Mikrosystemtechnik, Mechatronik, Sensorik und Aktorik könnte im Zusammenhang mit der Mensch-Maschinen-Interaktion noch stärker nachgefragt werden.

3.2 Baden-Württemberg, das Land der Ingenieurinnen und Ingenieure: leistungsstark, vernetzt, interdisziplinär, exzellent

3.2.1 Anforderungen der Gesellschaft

Die Welt verändert sich, nicht nur kontinuierlich, sondern immer häufiger auch in Sprüngen. Durch Krisen und neue Technologien ausgelöste Disruptionen und gesellschaftliche Trends setzen sich aufgrund der Digitalisierung und Vernetzung sehr schnell global durch.

Für die Ingenieurinnen und Ingenieure bedeutet das: Sie müssen sich an Disruptionen und Trends anpassen, diese analysieren und dann auch mit gestalten. Diese Anpassungsfähigkeit ist wichtig, weil sie der Gesellschaft direkten Nutzen bringen. Es müssen also Strukturen geschaffen werden, die Veränderungen erlauben. Von Anfang an müssen Lehre, Forschung und Technologietransfer als **offenes Gesamtsystem** betrachtet und fortentwickelt werden.

Auch werden die Zusammenhänge in Unternehmen und Märkten immer komplexer. Man kann die steigende Komplexität zwar nicht vollständig beherrschen, aber man muss mit ihr umgehen, sie sinnvoll bewirtschaften können. Es werden mehr Menschen benötigt, die hier kompetent sind. Der systemische Ansatz muss künftig in den Ingenieurwissenschaften daher stärker verfolgt werden.

Die Ingenieurwissenschaften tragen von allen DFG-Fächergruppen am stärksten zur volkswirtschaftlichen **Zukunftssicherung** des Landes bei. Sie lassen den unmittel-

3.2.2 Anforderungen der baden-württembergischen Unternehmen

Die Hälfte der Unternehmen wünscht sich für die Zukunft mehr Praxisorientierung in der Hochschulausbildung. Ein Viertel findet, dass sowohl Theorie als auch Praxis verstärkt werden müssen. Dazu muss die Basis des Bachelor-Abschlusses breiter werden.

Inter- und Transdisziplinarität sowie systemisches Denken und Handeln wird zum Standard, sowohl bei Querschnittsthemen innerhalb der Ingenieurwissenschaften (zum Beispiel Mikrosystemtechnik, Mechatronik) als auch zwischen den Bereichen (vor allem Wirtschaftswissenschaften, aber auch Naturwissenschaften).
Um im Unternehmen mehrere unterschiedliche Rollen erfüllen zu können (vgl. Kapitel 2.2), sollten Ingenieurinnen und Ingenieure neben einer breiten Grundlagenausbildung auch mehr Freiräume für Praktika und den Ausbau ihrer Sozialkompetenzen erhalten.

3.2.3 Kompetenzen von Ingenieurinnen und Ingenieuren der Zukunft

Die baden-württembergischen Ingenieurinnen und Ingenieure der Zukunft müssen also neben ihren Grund- und Fachkenntnissen
- in Systemen und Kreisläufen denken,
- mit Komplexität umgehen können,
- interdisziplinär und teamfähig handeln,
- über die Folgen und Auswirkungen ihres Tuns reflektieren (können), also Technikfolgenabschätzung, -ethik, -philosophie, -soziologie belegt haben
- Kommunikations- und Organisationsfähigkeit sowie Projektmanagementkenntnisse haben,
- wissenschafts-methodisch kompetent sein,
- kreativ und anwendungsorientiert Probleme lösen können,
- über wirtschaftliche Kenntnisse bzgl. Produktlebenszyklus und Marktdenken verfügen,
- Berechnungsmethoden beherrschen,
- gesetzliche Rahmenbedingungen kennen,
- über Gründergeist und unternehmerisches Denken verfügen,
- aufgrund der zunehmenden Bedeutung der Digitalisierung die Informations- und Kommunikations-Technologien beherrschen.

Diesen Anforderungen ist mit einem sich ständig modernisierenden Ausbildungssystem Rechnung zu tragen. Die Ingenieurwissenschaften sind dabei in besonderem Maße auf die institutionell abgesicherte und personelle Vernetzung mit der Industrie angewiesen.

3.2.4 Baden-Württemberg als „Exzellenzzentrum“ der Ingenieurwissenschaften

Das baden-württembergische Innovationssystem sichert die internationale Wettbewerbssfähigkeit des Landes und somit auch dessen Wohlstand. Die Ingenieurwissenschaften sind ein elementarer Bestandteil dieses Innovationssystems und tragen erheblich zu dessen Erfolg bei. Wenn man die Veränderungen in der Welt sowie die Möglichkeiten Baden-Württembergs und seiner kreativen Ingenieurinnen und Ingenieure betrachtet, eröffnet sich ein Handlungsraum mit enormem Potenzial, um den Beitrag der Ingenieurwissenschaften zum Erfolg des Innovationssystems zu sichern bzw. nachhaltig auszubauen.

Es ist deshalb die gemeinsam getragene Vision der Kommission, Baden-Württemberg zu einem national und international sichtbaren Zentrum exzellenter Ingenieurwissenschaften auszubauen und somit die Basis für die hohe Wettbewerbssfähigkeit des Innovationssystems in Baden-Württemberg zu sichern.
3 Leitbild Ingenieurwissenschaften 2025

Die in Kapitel 4 formulierten Handlungsempfehlungen der Arbeitsgruppen, die die Kommission in Kapitel 5 zu zentralen Handlungsempfehlungen verdichtet hat, sollen konkret zur Umsetzung dieser Vision dienen.
4.1 Lehre

4.1.1 Heutige und zukünftige Anforderungen an die Lehre in den Ingenieurwissenschaften

Die Gesellschaft hat vielfältige Erwartungen und Anforderungen an das Bildungssystem als Ganzes und an die Lehre in den Ingenieurwissenschaften in Baden-Württemberg im Speziellen. Vier Spannungsfelder werden in den nächsten zehn Jahren zu adressieren sein:

Ausbildung und Bildung

Aktualität, mittelfristiger Trend und langfristige Flexibilität

Ingenieurbedarf und persönliche Lebensentwürfe

Die individuelle Entscheidung für einen bestimmten Weg im tertiären Bildungssystem ist frei und folgt den persönlichen Lebensentwürfen der Studentinnen und Studenten. Die Deckung des Ingenieurbedarfs in Baden-Württemberg kann nur gelingen, wenn sowohl das Angebot im tertiären Bildungssystem wie auch die Realität der Arbeitswelt mit diesen Vorstellungen in Übereinstimmung stehen.

Anforderungen und Studienerfolg

4.1.2 Was ist gute Lehre?

Eine einheitliche Definition von guter Lehre gibt es nicht. Es lassen sich jedoch zahlreiche Faktoren nennen, die zum Gelingen von Lehre beitragen.

Der Wissenschaftsrat, die Deutsche Forschungsgemeinschaft, der Stifterverband für die Deutsche Wissenschaft und die Europäische Union haben sich diesem Thema angenommen. Mit Blick auf die Ingenieurwissenschaften sind die zahlreichen Studien des Verbands Deutscher Maschinen- und Anlagenbau (VDMA) oder des VDI zu nennen, die auf die Verbesserung von Studienerfolg und die Reduzierung von Studienabbrüchen fokussieren, sowie die forschungsorientierten Untersuchungen des Deutschen Zentrums für Hochschul- und Wissenschaftsforschung (DZHW) oder die Deutsche Hochschulrektorenkonferenz mit ihrem umfassenden Projekt nexus. Die Beiträge machen deutlich, dass die Hochschulen in den vergangenen zehn Jahren beispielsweise erhebliche Anstrengungen bei der Erhöhung der Lehre in der Wissenschaft zu erhöhen.

Grundsätzlich muss gute Lehre die Ingenieurabsolventinnen und -absolventen in die Lage versetzen, innerhalb der aktuellen Grenzen der Erkenntnis, innovative Produkte zu kreieren und fundierte Ingenieurleistungen zu erbringen. Ein Teil sollte in der Lage sein, in aktueller Forschung die Grenzen der Erkenntnis zu erweitern.

Die Studienanforderungen sind hoch, die Voraussetzungen der Studierwilligen hingegen nicht immer adäquat. In Schule und Studienvorbereitungsphase sollten daher die heterogenen Leistungsvoraussetzungen besser an die Studienanforderungen angeglichen werden. Die Qualität der Anfängerinnen und Anfänger muss steigen. Die
gute Lehre knüpft daran: Sie sichert durch eine heterogenitätsorientierte und
diversitäts sensible Lehr- und Lernumgebung in der Studieneingangsphase den Stu-
dienerfolg. Abgestimmt auf den spezifischen Bedarf der Ingenieurwissenschaften,
umfasst sie mehr als nur die reine Wissensvermittlung in unterschiedlichen Lehr-
formaten. Weitere Bausteine guter Lehre sind die Studieninhalte und -strukturen, ein
zielgerichtetes Betreuungskonzept, die weitere Transformation der Digitalisierung
in die Lehre, ein umfassendes Qualitätsmanagementsystem und die Personalent-
wicklung.

Die Studieninhalte müssen Fach-/Methodenwissen in den wissenschaftlichen Grund-
lagen, für die Anwendung sowie nach dem aktuellen Stand der Forschung umfassen.
Dabei wird die unterschiedliche Gewichtung von Wissenschafts-, Anwendungs- und
Praxisbezug durch die differenzierten Aufgabenprofile der drei Hochschularten Uni-
versitäten, Hochschulen für Angewandte Wissenschaften und der Dualen Hochschule
Baden-Württemberg bestimmt. Ferner sollten soziale und interkulturelle Kompeten-
zen gefördert werden.

Um der Bedeutung des interdisziplinären Ingenieurwesens besser Rechnung zu tra-
gen, müssen die Grenzen zwischen den Fachdisciplinen durchlässiger werden. Ein
Beleg dafür sind die steigenden IKT-Anteile und allgemein die zunehmende Bedeu-
tung der Digitalisierung. Nur durch eine gute interdisziplinäre Zusammenarbeit zwi-
ischen den Ingenieurwissenschaften und den angrenzenden Fachgebieten lassen sich
die Herausforderungen der Zukunft bewältigen.

Auch der gesetzliche und finanzielle Rahmen wirkt sich auf die Qualität der Studien-
und Lehrbedingungen aus. Ebenso wird eine adäquate Infrastruktur benötigt.

In der Öffentlichkeit und insbesondere in Schulen muss die große gesellschaftliche
Bedeutung von Ingenieurinnen und Ingenieuren stärker thematisiert werden. Es gibt
einfache Rezepte, die Attraktivität des Ingenieurberufs zu steigern und die Faszina-
tion für technische Berufe zu wecken: begeisternde Projekte, kreative Lösungen,
gesellschaftlich relevante Aufgaben, faszinierende Perspektiven und inspirierende
Vorbilder gibt es zuhauf.

4.1.3 Handlungsfeld 1: Faszination Ingenieurin und Ingenieur – Begeisterung
für technische Berufe und Studiengänge wecken

Ausgangsbasis

Baden-Württemberg ist als erfolgreicher Wirtschaftsstandort mit einer stark mit-
telständisch geprägten Industrie darauf angewiesen, dass für die unterschiedlichen
Industriezweig und Unternehmensgrößen in ausreichendem Maß technisch qua-
ligiertes Personal auf allen Ausbildungsebenen zur Verfügung steht. Die Situation
verschärft sich in den nächsten Jahren durch den demografischen Wandel und die
damit verbundenen rückläufigen Schülerzahlen und die schwindende Technikorien-
tierung von Jugendlichen.

Begeisterung und Faszination für die Ingenieurwissenschaften entsteht insbesonde-
re über Inhalte, die Darstellung der gesellschaftlichen Relevanz, die beruflichen und
persönlichen Perspektiven sowie über konkret erlebbare Vorbilder und über die Er-
wartungen an das Studium als solches.
Der Ingenieurberuf ist in erster Linie eine Zielgruppe anzusprechen, die am Gymnasium auszurichten, am Realschulbereich zu gestalten und am Berufsbildungssegment Qualität zu gewährleisten. Insbesondere für Frauen hängt die Entscheidung für oder gegen den Beruf als Ingenieur mit, ob Technik zu innovativen Lösungen führt oder ob sie sich gut begründet für eine Ausbildungsberuf oder eine weiterführende Schule entscheiden können.

TOP BORS
Im Rahmen des „Themenorientierten Projekts: Berufsorien
tierung an Realschulen (TOP BORS)“ sind die Schülerinnen und Schüler aufgefordert sich selbstverantwortlich und stark handlungsorientiert einen Grad an Berufswahlrefle devised zu geben, so dass sie sich gut begründet für einen Ausbildungsberuf oder eine weiterführende Schule entscheiden können.

Quelle: http://www.schule-bw.de/schularten/realschule/top/bors/ueber/info/

BOGY: Berufs- und Studienorientierung am Gymnasium

Quelle: http://www.schule-bw.de/schularten/gymnasium/bogy/ueber/info/

Begeisterung durch Inhalte:
- Der Ingenieurberuf ist in erster Linie ein kreativer Beruf. Es geht darum, neue Wege zu gehen und neue Lösungen zu schaffen. Das ist die inhaltliche Klammer für das gesamte Berufssegment des Ingenieurwesens: Die Aufgabe Neues zu erfinden und konstruktiv auszusetzen steht damit für Kreation im eigentlichen Wortsinn.
- In Programmen wie der Berufsorientierung an Realschulen BORS oder der Berufs- und Studienorientierung am Gymnasium BOGY kommen Talenttests derzeit nur punktuell zum Einsatz. Solche Tests sind jedoch eine gute Möglichkeit, Techniktalente zu entdecken und eine intrinsisch motivierte Zielgruppe anzusprechen.
- Zentrale Entwicklungs- und Innovationsbereiche der Ingenieurwissenschaften mit Bezug zu Produkten aus der Lebenswelt sollen jungen Menschen anschaulich vermittelt werden. Dazu eignen sich sowohl Endprodukte wie Smartphones als auch gesellschaftlich relevante Themen, wie die Energiewende, oder Themen zum Stau, wie die Raumfahrt.

Begeisterung über gesellschaftliche Relevanz:
- Insbesondere für Frauen hängt die Attraktivität des Berufsbildes Ingenieurin in hohem Maß davon ab, ob Technik zum Wohlergehen der Gesellschaft eingesetzt werden kann. Der schonende Umgang mit Ressourcen als Beitrag zu einer nachhaltigen gesellschaftlichen Entwicklung und die Bedeutung der Ingenieurinnen und Ingenieure für Innovationen und wirtschaftliche Stabilität sind Themenfelder, die gesellschaftlich relevante Ingenieursarbeit illustrieren.

Begeisterung durch Perspektiven:
- Die beruflichen Perspektiven, die die Ingenieurwissenschaften für technikaffine junge Menschen bieten, sind von zentraler Bedeutung. Gehaltstabellen liefern die Basis für extrinsische Motivation.
- Die unterschiedlichen Karrierewege (Fach- oder Führungskarriere, internationale Optionen etc.) sind in einer Multioptionsgesellschaft ein Pluspunkt. Man entscheidet sich für ein Studium, aber noch nicht für einen festen Karriereweg.

Begeisterung durch Vorbilder:

Begeisterung für das Studium:

Handlungsempfehlungen

2. **Authentische Vermittlung des Berufsbilds:** Die bestehenden Bildungspartnerschaften sollen genutzt werden, um mit jungen Ingenieurinnen und Ingenieuren aus der Berufspraxis das Berufsbild authentisch in den Schulen zu vermitteln. Unterschiedliche Formen (Veranstaltungen der Berufsorientierung, Beiträge im Fachunterricht, Projekte mit Schülerinnen und Schülern) sollten angeboten werden. Die Perspektiven technische Berufsbilder (technische Fachkraft, Meisterin/Meister, Technikerin/Techniker, Ingenieurin/Ingenieur) sollten verstärkt in Sekundarstufe I und II thematisiert werden.

4. Weniger differenzierte Bachelor-Studiengänge: Damit das Berufsbild klar ist und Fehlorientierung begrenzt wird, sollten Bachelor-Studiengänge der Hochschulen weniger spezialisiert sein, sondern auf ein möglichst breites thematisches Feld in einer Fachrichtung, verzahnt mit Anwendungskompetenzen, fokussieren.

4.1 Lehre

4.1.4 Handlungsfeld 2: Differenziertes Hochschulsystem in Baden-Württemberg – Profile in der Lehre weiterentwickeln und kommunizieren

Ausgangsbasis

Ströme der Studentinnen und Studenten im Ingenieurwesen

Um die heutigen Rahmenbedingungen mit den zukünftigen quantitativen und qualitativen Anforderungen an das Hochschulsystem abzuleiten, hat die Arbeitsgruppe Lehre ein Flussdiagramm entworfen, das den Weg von Studentinnen und Studenten der Ingenieurwissenschaften durch das baden-württembergische Hochschulsystem anhand von heute verfügbaren Daten verdeutlichen soll (Abbildung 4-1).

Abbildung 4-1: Ströme der Studentinnen und Studenten im Ingenieurwesen*

Dargestellt wird der quantitative Input (Studienanfängerinnen und Studienanfänger) und Output (Absolventinnen und Absolventen) nach Hochschulzugangsberechtigung (HZB) bzw. Abschlussart Bachelor/Master (aufgrund der Umstellung durch den Bologna-Prozess wurden Diplom-Studentinnen und -Studenten nicht berücksichtigt) sowie die unterschiedlichen Möglichkeiten in das Hochschulsystem hinein bzw. heraus zu treten.

Das Flussdiagramm zeigt den Verlauf der Studienanfängerinnen und Studienanfänger, die ein ingenieurwissenschaftliches Studium aufnehmen (Index = 100). Hier zeigt sich, dass mehr als zwei Drittel der Studienanfängerinnen und Studienanfänger ihre HZB in Baden-Württemberg und rund ein Drittel in einem anderen Bundesland oder dem Ausland erlangt haben. Das bestätigt Baden-Württembergs Ruf als Importland in der Ingenieurausbildung.
Dass mehr als die Hälfte ihr Bachelorstudium an einer HAW beginnen, ist ingenieurspezifisch, wie Tabelle 4-1 zeigt. Hier kommt vor allem die Anwendungsorientierung der Ingenieurwissenschaften zum Ausdruck, die die HAW mit ihrem praktischen Bezug zur regionalen Wirtschaft aufgreifen.

<table>
<thead>
<tr>
<th>Verteilung der Studienanfängerinnen und Studienanfänger im Bachelor**</th>
<th>Universität</th>
<th>HAW</th>
<th>DHBW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingenieurwissenschaften *</td>
<td>27 %</td>
<td>56 %</td>
<td>17 %</td>
</tr>
<tr>
<td>Naturwissenschaften **</td>
<td>89 %</td>
<td>11 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Baden-Württemberg gesamt ***</td>
<td>39 %</td>
<td>35 %</td>
<td>17 %</td>
</tr>
</tbody>
</table>

Tabelle 4-1: Verteilung der Studienanfängerinnen und Studienanfänger im Bachelor auf die staatlichen Hochschularten (Durchschnitt von 2010–2013)

* Ingenieurwissenschaften beinhalten hier Informatik (in amtlicher Statistik unter Naturwissenschaften geführt) und das gesamte Wirtschaftsingenieurwesen (in amtlicher Statistik teilweise unter Wirtschaftswissenschaften eingeordnet).

** Ohne Informatik, siehe Anmerkung Ingenieurwissenschaften.

*** 9 % sonstige Hochschularten: Kunst-, Pädagogische, nicht-staatliche, Verwaltungs- oder Privathochschulen.

Das baden-württembergische Hochschulsystem

Baden-Württemberg verfügt über ein gut ausgebautes, differenziertes Hochschulsystem, das mit den Studienangeboten der drei Hochschularten Universitäten, HAW und DHBW eine große Bandbreite an Ingenieurdisziplinen abdeckt. Die grundsätzliche Differenzierung ist auf der Grundlage der in §2 Absatz 1 Satz 1 Landeshochschulgesetz (LHG) verankerten Aufgaben festgelegt.

Das breite Spektrum der Einsatzbereiche und Rollen von Ingenieurinnen und Ingenieuren in Wissenschaft, Unternehmen und Verwaltung wird in Baden-Württemberg durch die Ausbildungsprofile der drei Hochschularten bedient, die sich durch die Gewichtung von Wissenschafts-, Anwendungs- und Praxisbezug unterscheiden.

Als Folge steht dem Beschäftigungssystem ein Spektrum von Ingenieurprofilen zur Verfügung, das mit der konsekutiven Studienarchitektur Bachelor-, Master- sowie der Doktorandenausbildung eine weitere Differenzierung aufweist.

Die Substitution der nach Hochschulart in der Vor-Bologna-Zeit klar unterscheidbaren Diplom-Studiengänge durch die offenkundig undifferenzierten Bachelor- und Master-Abschlüsse in den vergangenen zehn Jahren wirft die Frage auf, wie die Unterneh-

Demgegenüber zeigt die Kritik an der **Europäischen Studienreform** – und vor allem auch an deren Umsetzung – **Handlungsbedarf** auf. Einzelne Aussagen thematisieren den Verlust der klaren Kompetenzprofile, die in der Vor-Bologna-Zeit mit den Abschlüssen der unterschiedlichen Hochschultypen verbunden waren. Dieser Umstand und die starke Ausdifferenzierung der Studiengänge machen den Arbeitsmarkt allgemein, aber auch zwischen Abschlüssen der gleichen Hochschularte deutlich unübersichtlicher.

Die Weiterentwicklung der unterschiedlichen **Hochschulprofile** in Bezug auf die Lehre muss sich im Spannungsfeld bewegen zwischen der **hohen Zufriedenheit** der Unternehmen mit der ausdifferenzierten akademischen Ausbildung in Baden-Württemberg und der allgemeinen Wertung eines unübersichtlicheren Arbeitsmarkts für Ingenieurinnen und Ingenieure. In den Fokus der Unternehmenskritik rückt dabei der Bachelor-Abschluss, der vereinzelt sogar als nicht vollwertig ausgebildeter Ingenieur wahrgenommen wird. Diese ansteigende Skepsis und Unzufriedenheit mit dem ersten Studienabschluss wird in anderen Befragungen der jüngsten Vergangenheit andererseits belegt, andererseits ihr aber auch widersprochen.

So relativiert der aktuelle Ergebnisbericht zur Unternehmensbefragung „Karrierewege für Bachelor-Absolventen“ deutlich die Kritik, indem er gute Chancen für Bachelor-Absolventinnen und -Absolventen allgemein und die **Bevorzugung** von Fachhochschul-Absolventinnen und -Absolventen beim Berufseinstieg und bei der Karriere nachweist. Mit dem Bericht wurde im Jahr 2014 vom **Institut der deutschen Wirtschaft Köln** und vom **Stifterverband** für die Deutsche Wissenschaft eine umfangreiche empirische Basis zur Akzeptanz von Bachelor-Absolventinnen und -Absolventen vorgelegt.

Für grundsätzliche Betrachtungen und daraus abgeleitete Empfehlungen zur Weiterentwicklung der institutionellen Struktur des Hochschulsystems wird auf die Empfehlungen und Stellungnahmen des **Wissenschaftsrats** verwiesen.
Handlungsempfehlungen

7. Damit die Erwartungen bzw. die fachlichen Vorkenntnisse der Studienbewerberinnen und -bewerber zu den Anforderungen des jeweiligen Ingenieurstudiums passen, sind die spezifischen Merkmale von Universitäten, HAW und Dualer Hochschule gegenüber den Studieninteressierten besser zu kommunizieren.
4.1 Lehre

4.1.5 Handlungsfeld 3: Heterogenität und Diversität als Chance – Qualität der Studienanfängerinnen und Studienanfänger erhöhen

Ausgangsbasis

Unter der Heterogenität der Studentinnen und Studenten an Hochschulen versteht man in erster Linie die unterschiedlichen Bildungsbios und divergierenden Eingangskompetenzen, denen die Hochschulen bereits heute schon mit hohem Aufwand begegnen. Der Begriff Diversität wird in Verbindung mit der Chancengleichheit einzelner Gruppen benutzt, die sich durch Merkmale wie Geschlecht, Alter, Religion, kulturelle Zugehörigkeit, Behinderung oder soziale Herkunft unterscheiden. Während der Bedarf an hoch qualifizierten Fachkräften in Deutschland verstärkt durch die demografische Entwicklung in den Unternehmen schon länger zu einem bewussten Umgang mit Vielfalt oder Diversität der Belegschaft geführt hat, wird das Potenzial einer diversitätssensiblen Hochschule erst in neuerer Zeit erkannt.

Studieren gilt heute als Normalfall. In Deutschland nimmt mehr als die Hälfte eines Altersjahrgangs ein Hochschulstudium auf. Mit der Zahl der Studentinnen und Studenten ist infolgedessen auch die Heterogenität der Studienanfängerinnen und -anfänger gestiegen. Im Wesentlichen lassen sich bei den Veränderungen der Hochschulzugänge, die signifikant die Heterogenität der Studienanfängerschaft erhöhen, zwei Ursachen ausmachen:

- Die Übergangssquote in ein Studium ist durch die politisch gewollte höhere Bildungsbeteiligung stark angewachsen. Vergleiche der Daten zu Studienberechtigten und Studienanfängern belegen, dass auf mittlere Sicht etwa 80 Prozent der Studienberechtigten ein Studium an einer Hochschule aufnehmen.
- Die Öffnung der Hochschulen durch die Diversifizierung der Hochschulzugänge hat die Studierendenvielfalt weiter verstärkt. Neben der klassischen schulischen HZB stehen Studienmöglichkeiten für Personen (etwa Meisterinnen und Meister) ohne schulische HZB mit allgemeinem Hochschulzugang ohne Eignungsprüfung sowie die fachgebundenen HZB mit Prüfung für sonstige beruflich Qualifizierte.

Kapazitätsrecht

Das Kapazitätsrecht regelt, wie die jährliche Aufnahmekapazität (Zahl der verfügbaren Studienplätze) an den staatlichen Hochschulen zu ermitteln ist und auf welche Weise gegebenenfalls Zulassungsbeschränkungen für einzelne Studiengänge festgesetzt werden können.

Folgerichtig wird der Handlungsdruck auf die Hochschulen steigen, durch passgenaue Information und Beratung in der Vorstudienphase

- fehlenden Kenntnissen entgegenzuwirken,
- Fehlorientierung zu reduzieren und
- die Wahrnehmung der Ingenieurstudienangebote und ihre spezifischen Anforderungen zu steigern.

Handlungsempfehlungen

1. In der Vorstudienphase sind Studieninformation und Beratung über technische Berufe, das Berufsbild Ingenieurin oder Ingenieur und besondere Anforderungen des Ingenieurstudiums durch konzeptuelle Lösungen zu stärken. In Zusammenarbeit mit Akteurinnen und Akteuren aus Schulen, Politik, Verbänden, Vertreterinnen und Vertretern der Berufspraxis, Studienberatung durch Agentur für Arbeit etc. sollen die besonderen Anforderungen eines Ingenieurstudiums in Verbindung mit den hochschularten-spezifischen Merkmalen Universitäten, HAW und DHBW besser kommuniziert werden. Im Fokus stehen dabei die spezifischen Leistungsmerkmale, Anforderungen und Voraussetzungen bei Ingenieurinnen und Ingenieuren unterschiedlicher Fachdisziplinen.

4. Ein heterogenitätsorientiertes Zulassungsverfahren soll verhindern, dass Studienbewerberinnen und -bewerber, die offenkundig nicht über das notwendige schulische Leistungsniveau verfügen, zum Studium im gewählten Ingenieurstudienengang zugelassen werden. Dabei sollten auch keine übermäßigen Nachrückver-
fahren durchgeführt werden, um unbedingt die Kapazitätsgrenzen zu erreichen. Diese Nachrücker erfordern in der Regel aufgrund ihrer Leistungsdefizite starken Betreuungsaufwand und brechen dann doch oft genug ihr Studium wieder ab.

Je nach rechtlichen Maßgaben, die dem Zulassungsverfahren zugrunde liegen, muss Studieninteressierten mit ungenügenden schulischen Leistungsniveaus die Gelegenheit gegeben werden, dies durch Zusatzangebote der Hochschule auszugleichen. Das können Angebote wie propädeutische Kurse, Brückenkurse bis hin zu flexiblen Studienmodellen oder Orientierungssemester sein. An vielen Hochschulen ist das bereits eingeführt.

5. Die sozialen Aufstiegschancen lassen sich durch offene Bildungswege weiter erhöhen. Den Ingenieurwissenschaften kommt hier eine große Bedeutung zu, da sie weniger stark von sozial geprägten Konventionen und ererbten Netzwerken geprägt sind. Die Bildungswege sind durchlässig. Es geht hier aber nicht nur um die Integration von Studentinnen und Studenten, die ihre primäre Bildungssozialisation nicht oder nur teilweise in Deutschland erfahren haben, sondern allgemein um einen bewussteren konzeptionellen Umgang mit der Diversität der Studentinnen und Studenten und ihren unterschiedlichen Voraussetzungen.

4.1.6 Handlungsfeld 4: Entwicklungsperspektive Genderbalance – Attraktivität des Ingenieurberufs für Frauen steigern

Ausgangsbasis

Handlungsempfehlungen

Nachfolgende Handlungsempfehlungen gliedern sich in Empfehlungen zum Gewinnen von Studentinnen für ein ingenieurwissenschaftliches Studium, zur optimalen Unterstützung während des Studiums sowie zur Motivation und Ermutigung geeigneter Kandidatinnen für die Promotion und die wissenschaftliche Karriere.

Vor dem Studium: Wie können junge Frauen zur Wahl eines ingenieurwissenschaftlichen Studiums motiviert werden?

Während des Studiums: Wie können junge Frauen in ingenieurwissenschaftlichen Studiengängen optimal unterstützt werden?

Nach dem Studium: Wie kann der weibliche wissenschaftliche Nachwuchs in den Ingenieurwissenschaften spezifisch gefördert werden?

4.1.7 Handlungsfeld 5: Vom Studienstart zum Berufseinstieg – Studienerfolg als Ganzes begreifen

Ausgangsbasis

Weitere Aspekte von Studienerfolg sind die Lehr- und Lernumgebung einschließlich eines zielgerichteten Betreuungskonzepts, das Studienumfeld bzw. die Studienbedingungen sowie der Verbleib der Absolventinnen und Absolventen im Beschäfti...
Die Bildungssysteme. Die Qualitätsentwicklung dieser Aspekte sind grundsätzlich Ziele der Europäischen Studienreform, auch wenn in den Empfehlungen nur die aufgeführt werden, die einen direkten Bezug zu den Ingenieurwissenschaften haben.

Generell gilt, dass alle Maßnahmen, die den Studienerfolg fördern, sich auch wirksam zur Förderung unterrepräsentierter gesellschaftlicher Gruppen nutzen lassen. Das Spektrum reicht von beruflich Qualifizierten über Betreuungsangebote für Studentinnen und Studenten in besonderen Lebenslagen, ausländische Studentinnen und Studenten bis hin zu Studentinnen und Studenten mit Behinderungen oder chronischen Krankheiten.

Handlungsempfehlungen

1. Studieneingangsphase

2. Lehr- und Lernumgebung

Eine zukunftsorientierte Lehr- und Lernumgebung, die auf den spezifischen Bedarf der Ingenieurwissenschaften abgestimmt ist, umfasst mehr als nur die reine Wissensvermittlung in unterschiedlichen Lehrformaten. Die Kompetenzentwicklung im Studienverlauf muss hier eng an der beruflichen Relevanz ausgerichtet sein. Anwendungsnahe Projekte in technischen Bereichen, die gleichzeitig Arbeitstechniken und Methodenkompetenzen fördern, integrieren gerade im Bachelor-Studium von Unternehmen geforderte stärkere Praxisorientierung.

Klar ist, dass die Curricula studierbar sein müssen. Gleichrangig muss aber auch die im Zentrum der Europäischen Studienreform stehende Orientierung der Lehre an Lernergebnissen sowie das eigenständige Lernen der Studentinnen und Studenten durch ein besseres Verständnis des studierendenzentrierten Lernens weiter entwickelt werden. Studentinnen und Studenten sind einerseits in die Lage zu versetzen, mit Wissen und Haltungen umzugehen, und andererseits nicht nur fachwissenschaftliche Fähigkeiten, sondern auch eigene Ansichten und Werte sowie überfachliche Fähigkeiten zu entwickeln.

Den Studentinnen und Studenten soll die Gelegenheit gegeben werden, die verschiedenen Phasen eines Forschungsprojekts zu erfahren. Das soll die Begeisterung fürs Studienfach und die eigene Verantwortung am Kompetenzerwerb stärken. Folgerichtig ist forschendes Lernen als aktiveres Lehr-Lern-Format und zum Heranführen an wissenschaftliches Arbeiten weiterzuentwickeln.

Um der Bedeutung von interdisziplinärem Ingenieurwesen besser Rechnung tragen zu können, müssen die Grenzen zwischen den klassischen Fachdisziplinen durchlässig werden. Ein Beleg dafür sind die steigenden IKT-Anteile oder allgemein die zunehmende Digitalisierung jeglicher Technik.

3. Studienumfeld beziehungsweise -bedingungen

Auch wenn die Erwartungen der Europäischen Studienreform an die Mobilität der Lernenden bisher nur eingeschränkt erfüllt werden, ist zu beobachten, dass der Hochschulwechsel von Studentinnen und Studenten in den Ingenieurstudiengängen innerhalb Deutschlands eigentlich nicht stattfindet. Ein quantifizierbarer Beleg lässt sich aufgrund des fehlenden Datenmaterials nicht führen. Hemmnisse, die die
Mobilität national wie international erschweren, müssen weiter abgebaut werden, um auch darüber zusätzliche Kompetenzen und die Persönlichkeitsentwicklung zu fördern.

4. Bildungsweichen und Karrierewechsel

Es werden die jüngsten Erklärungen der Landesrektorenkonferenzen und der Rektorenkonferenz der HAW BW e.V. in Bezug auf die Handhabung der kooperativen Promotion begrüßt, insbesondere mit Blick auf die gesetzlichen Vorgaben im LHG § 38 Promotion. Diese sind umzusetzen.

Die Datenbasis zu den Strömen der Studentinnen und Studenten im Ingenieurwesen (Kapitel 4.1.4) muss so angepasst werden, dass ein Monitoring der Ströme der Studentinnen und Studenten an den Bildungsweichen hin zu einem Bachelor- bzw. Master-Studium sowie zu einer Promotion hochschul- wie auch standortübergreifend möglich wird. Ein grundlegender Schritt muss die Überführung der Bachelor- und Master-Abschlüsse in die amtliche Statistik sein.
4.1 Lehre

4.1.8 Handlungsfeld 6: Wandel des Ingenieurberufs – Studieninhalte und Studienstrukturen auf die Zukunft ausrichten

Ausgangsbasis

In allen Stufen des industriellen Innovationsprozesses machen Ingenieurinnen und Ingenieure einen Großteil des Personals aus. Damit beeinflussen sie unmittelbar die Wettbewerbsfähigkeit der Unternehmen, die damit auch in Zukunft auf die Verfügbarkeit von hoch qualifizierten Absolventinnen und Absolventen angewiesen sind. Dies wirft die Frage auf, wie die Hochschulen mit zukunftsfähigen Studienbedingungen, -inhalten und -strukturen den dynamischen Veränderungen in Technologien und Märkten und damit dem Wandel des Ingenieurberufs Rechnung tragen müssen.

Wesentlicher Treiber dieser Entwicklung sind die Komplexität, Neuartigkeit oder Unbestimmtheit, die zunehmend die hohen Ansprüche an die systemische Lösungskompetenz der Absolventinnen und Absolventen bestimmen. D. h. neben der fachlichen Fundierung geht es im Rahmen von veränderten Lehr-/Lernprozessen darum, Studentinnen und Studenten in die Lage zu versetzen, eigene Einstellungen und Werte sowie überfachliche Fähigkeiten zu entwickeln. Kompetenzorientierung und studierendenzentriertes Lernen sind wesentliche Forderung der Europäischen Studienreformen.

Die akademische Qualifizierung durch das Studium bereitet die Absolventinnen und Absolventen auf Lebenslanges Lernen vor, das bereits heute durch umfangreiche Weiterbildungsf ormate der Hochschulen – einschließlich Programme für Wieder einsteigerinnen und Wiedereinsteiger – getragen wird. Weiterbildung beginnt in diesem Sinn nicht nur nach einem Studienabschluss, sondern beschreibt den Bedarf an zusätzlicher oder begleitender Wissens- und Kompetenzvermittlung, was neben berufsbegleitenden Studienprogrammen auch eigenständige Kontaktstudiengänge und Zertifikatskurse beinhalten kann.

MINT-Kolleg Baden-Württemberg

Quelle: http://www.mint-kolleg.de
Handlungsempfehlungen

5. Es sollte eine Diskussion darüber geführt werden, ob Hochschulen (vorrangig Universitäten) neben der bestehenden Studienstruktur die Möglichkeit bekommen sollten, grundständige 10-semestrige Master-Studiengänge zu erproben. Diese Studiengänge sollten nach dem sechsten Semester eine explizit beschriebene, dem Bachelor-Abschluss äquivalente Qualifizierungsstufe enthalten, die zum Hochschulwechsel sowohl inbound wie auch outbound genutzt werden kann. Wegen dieser Qualifizierungsstufe würden solche Studiengänge nicht als Rückkehr zum Diplom-Ingenieur gewertet werden können, da die Durchlässigkeit zu Studiengängen von HAW und DHBW sowie zu anderen Studienstrukturen gewahrt bleiben würde. Solche grundständigen Masterstudiengänge böten gegenüber der heutigen konsekutiven Studienstruktur folgende Vorteile:

- Verkürzung der Gesamtstudienzeit, da Wartezeiten und Studienzeiten geringer Arbeitsbelastung wegen noch nicht vollständig erbrachter oder bewerteter Prüfungsleistungen entfallen
- Steigerung der Mobilität und einfachere Einbindung von Praxisphasen, da eine größere Flexibilität der Studienplanung möglich ist
- Steigerung der Anziehungskraft der Studiengänge gegenüber anderen Standorten, da sie ein Alleinstellungsmerkmal aufweisen würden
- Reduzierung des administrativen Aufwands in der akademischen Selbstverwaltung und den Zentralen Verwaltungen, da erfahrungsgemäß der überwiegende
4.1 Lehre

Anteil der Universitätsstudentinnen und -studenten den konsekutiven Masterabschluss an einem Standort anstrebt und damit weniger Zulassungsverfahren, einfachere Prüfungsordnungen, geringere Belastung der Prüfungsausschüsse, Prüfungämter und Studiensekretariate möglich wären – Eröffnung eines zwar vorzeitigen, aber geregelten Studienabschlusses für Studienabbrücher (zweite Chance), da die Qualifizierungsstufe nach dem sechsten Semester äquivalent zum Bachelor-Abschluss wäre und mit einem solchen Zeugnis dokumentiert würde

Diese Empfehlung wird von den AG-Mitgliedern der Universitäten vertreten.

6. Gemäß §9 (2) Hochschulrahmengesetz sollen die Hochschulen die Arbeitswelt in ausreichendem Maß in die Prozesse der Studiengagentwicklung einbinden (z. B. durch Kompetenznetzwerke, Beiräte, Fachsiegel oder die Ausrichtung der Curricula an gemeinsam erarbeiteten Qualifikationsrahmen) können in den Ingenieurwissenschaften als weiteres Qualitätsmerkmal eingesetzt werden.

Best Practices: Hochschulnetzwerk Bildung durch Verantwortung e.V.

4.1.9 Handlungsfeld 7: Personalentwicklung für gute Lehre – Stellenwert erhöhen und Lehrkompetenz fördern

Ausgangsbasis

Die Qualität von Studium und Lehre und damit auch der Studienerfolg hängen ganz entscheidend vom Stellenwert der Lehre und der Weiterqualifizierung des Hochschulpersonals für die Aufgaben in Lehre, Betreuung und Beratung ab. Während die kontinuierliche Verbesserung der Lehr-, Lern- und Prüfungsmethoden formal Teil des Qualitätsmanagementsystems sein muss, schaffen die Qualifikation und Weiterbildung des Personals die Voraussetzungen für eine gute Lehre.

Personalentwicklung ist ein grundsätzliches strategisches Element der Hochschulen auf ihrem Weg zu einer qualitätsgeleiteten Entwicklung. Die Weiterqualifizierung für Lehrende im Hinblick auf die Lehrkompetenz gilt als Kernaufgabe der Hochschulen. Das ist kein ausgeprägtes Spezifikum der Ingenieurwissenschaften. Dennoch, der rasante Wandel der Berufs- und Tätigkeitsfelder von Ingenieurinnen und Ingenieuren so-
wie das erweiterte Verständnis der Lehrkompetenz der Europäischen Studienreform ergeben erhebliche Konsequenzen für die Qualifikation des Lehrpersonals.

Neben sehr gutem Fachwissen in den wissenschaftlichen Grundlagen, der Anwendungsoorientierung sowie Know-how in den angrenzenden Fachdisziplinen haben die Qualitätsziele des Bologna-Prozesses (wie die Anforderungen an eine heterogenitätsorientierte Lehr- und Lernumgebung) die Rolle der Lehrkräfte im Hinblick auf ihre didaktische und fachdidaktische Lehrkompetenz neu definiert.

Hochschuldidaktische Fachkompetenz wird aufgebaut, indem Lehrende an Weiterbildungen wie Seminaren, Einzelberatungen oder Coachings teilnehmen. Dort werden Methoden aufgezeigt, die studentische Lern- und Entwicklungsprozesse und das eigenständige Lernen der Studentinnen und Studenten anregen. Dazu gehören auch Konzepte neuer Lehr-Lern-Settings, um sich kritisch mit Rückmeldungen der Studentinnen und Studenten auseinanderzusetzen oder um gemeinsam Lösungen eines Problems entwickeln zu können.

Ein wichtiger Schritt zur Förderung der hochschulischen Personalpolitik ist, den Stellenwert von Lehre und didaktischer Lehrkompetenz weiter zu erhöhen. Dies gilt besonders für die Universitäten und dem Spannungsfeld unterschiedlich gewichteter Lehr- und Forschungszielen.

Handlungsempfehlungen

 Die Lehre ist durch eine bessere Verzahnung ihrer Praxis mit den Ergebnissen aus der Didaktikforschung zu stärken. Durch den Ausbau hochschulübergreifender Kooperationen und die bessere Annahme von zentralen Weiterbildungsangeboten können die Beratung und der Erfahrungsaustausch weiter gefördert werden.

 Best Practices: Hochschuldidaktikzentrum Baden-Württemberg der Universitäten, Geschäftsstelle der Studienkommission für Hochschuldidaktik an HAW in Baden-Württemberg in Karlsruhe.

Best Practices: Ars legendi-Preis für exzellente Hochschullehre, Stifterverband für die Deutsche Wissenschaft und die Hochschulrektorenkonferenz (HRK), oder Ars legendi-Fakultätenpreis für exzellente Hochschullehre in der Mathematik und den Naturwissenschaften, Stifterverband für die Deutsche Wissenschaft.

6. Alle Maßnahmen sind nur dann erfolgversprechend, wenn infrastrukturelle und personelle Ausstattungen zur Weiterbildung dauerhaft zur Verfügung gestellt werden.

4.1.10 Handlungsfeld 8: Finanzierung als Fundament – Gute Lehre finanziell dauerhaft absichern

Ausgangsbasis

Die Ingenieurstudiengänge verzeichneten nach dem Einbruch der frühen 90er Jahre zunächst in den Diplom-Studiengängen und ab 2005 infolge der Europäischen Studienreform in den grundständigen Bachelor- und Master-Studiengängen einen starken Anstieg der Zahl der Studentinnen und Studenten.

Der Effekt der Substitution der Diplom-Studiengänge durch die Bologna-Abschlüsse wird ab 2007 überlagert durch den Zuwachs an grundständigen Bachelor-Studienanfängerplätzen durch das Landesausbauprogramm „Hochschule 2012“. Mit diesem Programm wurden in Baden-Württemberg seit 2006 in ingenieurrelevanten Bachelor-Studiengängen zusätzlich mehr als 6.600 Studienanfängerplätze geschaffen\(^{143}\). Innerhalb der ersten fünf Jahre nach der vollständigen Umstellung des Bologna-Prozesses ist die Zahl der Studienanfängerinnen und Studienanfänger im Bachelor von mehr als 20.000 um 50 % auf über 30.000 gestiegen (Tabelle 4-2).

Hochschule 2012

Master 2016

Quelle: https://mwk.baden-wuerttemberg.de/de/hochschulen-studium/master-2016/

Im Jahr 2013 wurde das Programm „Master 2016“ gestartet. Dabei konnten bis heute insgesamt über 4.000 Studentenanfängerplätze in Master-Studiengängen neu eingerichtet werden. Davon entfielen im Bereich MINT mehr als 1.300 an Universitäten und über 800 an HAW.

Beide Ausbauprogramme haben zwar zu einem Anstieg der Studentenanfängerinnen und -anfänger geführt, der ingenieurrelevante Anteil an der Gesamtzahl blieb aber weitgehend unverändert (Tabelle 4-2).

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Studentinnen und Studenten pro Professorin bzw. Professor¹⁴⁶</th>
<th>Universitäten</th>
<th>HAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>68,7</td>
<td>27,8</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>104,8</td>
<td>37,1</td>
<td></td>
</tr>
</tbody>
</table>

Es zeichnet sich eine deutlich negative Entwicklung hinsichtlich der Betreuung der Studentinnen und Studenten durch die Professorin oder den Professor ab.

Im bundesweiten, universitären Vergleich hatte Baden-Württemberg 2005 das schlechteste Betreuungsverhältnis¹⁴⁶. Auch wenn sich dieser Rang bis 2013 um 3 Plätze verbessert hat, zeichnet sich eine deutlich negative Entwicklung hinsichtlich der Betreuung der Studentinnen und Studenten durch die Professorinnen und Professoren ab (Tabelle 4-3). Diesen Trend bestätigt auch der Verlauf an den baden-württembergischen HAW, welche jedoch im Bundesvergleich mit dem drittbesten Betreuungsverhältnis wesentlich besser positioniert sind.

<table>
<thead>
<tr>
<th>Studienanfängerinnen und Studienanfänger in den Ingenieurwissenschaften und insgesamt in Baden-Württemberg*</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Abweichung zu amtlicher Statistik, da Ingenieurwissenschaften hier Informatik und Wirtschaftsingenieurwesen inkludieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Studentinnen und Studenten pro Professorin bzw. Professor¹⁴⁶</th>
<th>Universitäten</th>
<th>HAW</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>68,7</td>
<td>27,8</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>104,8</td>
<td>37,1</td>
<td></td>
</tr>
</tbody>
</table>

Es zeichnet sich eine deutlich negative Entwicklung hinsichtlich der Betreuung der Studentinnen und Studenten durch die Professorin oder den Professor ab.

Im bundesweiten, universitären Vergleich hatte Baden-Württemberg 2005 das schlechtesten Betreuungsverhältnis¹⁴⁶. Auch wenn sich dieser Rang bis 2013 um 3 Plätze verbessert hat, zeichnet sich eine deutlich negative Entwicklung hinsichtlich der Betreuung der Studentinnen und Studenten durch die Professorinnen und Professoren ab (Tabelle 4-3). Diesen Trend bestätigt auch der Verlauf an den baden-württembergischen HAW, welche jedoch im Bundesvergleich mit dem drittbesten Betreuungsverhältnis wesentlich besser positioniert sind.

Handlungsempfehlungen

Aus den oben genannten Voraussetzungen resultieren die folgenden übergeordneten Handlungsempfehlungen. Die zunächst allgemein formulierten Empfehlungen gelten in besonderem Maß für die Studiengänge der Ingenieurwissenschaften, da neben der exponierten Ausgangsbasis diese auch deutlich betreuungs- und kostenintensiver als Buchwissenschaften sind.

4.1 Lehre

4.1.11 Zusammensetzung der Arbeitsgruppe Lehre

Mitglieder der Arbeitsgruppe Lehre:

Hr. Prof. Dr.-Ing. Thomas Bauernhansl (Universität Stuttgart; Fraunhofer-Institut für Produktionstechnik und Automatisierung, Stuttgart)
Hr. Prof. Dr.-Ing. Hansgeorg Binz (Universität Stuttgart)
Hr. Dr. rer. pol. Dietrich Birk (Verband Deutscher Maschinen- und Anlagenbau Baden-Württemberg)
Hr. Prof. Dr.-Ing. Martin Bossert (Universität Ulm)
Hr. Prof. Dr. phil. Thomas Breyer-Mayländer (Hochschule Offenburg)
Hr. Prof. Dr. Hendrik Brumme (Hochschule Reutlingen)
Hr. Prof. Dr.-Ing. Stephan Engelsmann (Ingenieurkammer Baden-Württemberg)
Hr. Prof. Dr.-Ing. Matthias Kind (Karlsruher Institut für Technologie)
Hr. Prof. Dr.-Ing. Dr. h.c. Winfried Lieber (Hochschule Offenburg) (Leiter der Arbeitsgruppe)
Hr. Prof. Dr.-Ing. Carsten Proppe (Karlsruher Institut für Technologie)
Fr. Prof.in Dr. rer. nat. Nicole Radde (Universität Stuttgart)
Fr. Prof.in Dr. rer. pol. Sabine Rein (Hochschule für Technik Stuttgart)
Hr. Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Werner Sobek (Universität Stuttgart)
Hr. Dr.-Ing. Kurt Schmalz (J. Schmalz GmbH)
Fr. Prof.in Dr.-Ing. Ulrike Wallrabe (Universität Freiburg)

Teilnehmerinnen und Teilnehmer des Sounding Boards:

Hr. Prof. Dr.-Ing. Frank Allgöwer (Universität Stuttgart)
Hr. Dr.-Ing. Winfried Blümel (Progress-Werk AG)
Hr. Prof. Dr. rer. nat. Achim Bubenzer (Hochschule Ulm)
Hr. Thomas Dederer (Student Universität Stuttgart)
Hr. Klaus Erdrich (BCT Technology)
Hr. Lars Garcia (Student DHBW)
Fr. Corinna Henninger (Studentin Hochschule Offenburg)
Fr. Pia Klante (Studentin Hochschule Ulm)
Hr. Gebhard Lehmann (Herrenknecht AG)
Hr. Dr.-Ing. Thomas Peukert (Meiko GmbH)
Hr. Prof. Dr. rer. nat. Peter Väterlein (Hochschule Esslingen)
Hr. Dr. rer. nat. Frank Woitzik (Gymnasium Ettenheim)
4.2 Forschung

4.2.1 Was ist gute Forschung?

Gute Forschung löst Probleme – theoretisch und praktisch!

Im Kern ist Forschung die methodisch gestützte Suche nach Lösungen, teils für bekannte, teils für zunächst nur vage greifbare Problemstellungen. Gute Forschung besteht im Aufgreifen der richtigen, das heißt die für die Lösung konkreter Probleme relevantesten oder aus wissenschaftlicher Sicht interessantesten Fragestellungen, deren Beantwortung sowie im Aufwerfen weiterführender, relevanter Problemstellungen. Hierbei folgt gute Forschung den Regeln guter wissenschaftlicher Praxis und bemüht sich fortwährend um wissenschaftliche Redlichkeit.

Zu guter Forschung gehört es an erster Stelle, bestens qualifizierte und hoch talentierte Wissenschaftlerinnen und Wissenschaftler mit einem inspirierenden Umfeld und leistungsfähiger Infrastruktur auszustatten, um sie im Wettbewerb um die besten Köpfe halten bzw. gewinnen zu können.

Gute Forschung vernetzt die Forschungsstandorte. Sie nutzt die jeweiligen Stärken unterschiedlicher Hochschultypen, unterschiedlicher außeruniversitärer Forschungsrichtungen der industriellen Forschung sowie der Region. Darüber hinaus vernetzen sich gute Forscherinnen und Forscher gezielt mit excellenten internationalen Partnern in der Wissenschaft und stellen somit den regelmäßigen Austausch neuester wissenschaftlicher Erkenntnisse über Landesgrenzen hinweg nachhaltig sicher.
4.2 Forschung

4.2.2 Handlungsfeld 1: Die Ingenieurwissenschaften als Innovationsmotor – Profile schärfen, Potenziale nutzen

Ausgangsbasis

Die hohe Attraktivität und große Verfügbarkeit von Drittmitteln aus der Industrie birgt für ingenieurwissenschaftliche Einrichtungen in Baden-Württemberg zudem die Gefahr, sich zu sehr auf die Durchführung von Forschungsprojekten in Kooperation mit Industriepartnern zu fokussieren. Da diese Art von Forschungsprojekten meist eher kurz- bis mittelfristig ausgerichtet ist, besteht das Risiko, dass strategische Forschungsinitiativen unterrepräsentiert sind.

In Bezug auf ingenieurwissenschaftliche Forschung zeichnen sich Universitäten vor allem durch ihre Fähigkeit aus, umfangreiche Forschungsvorhaben mit großen Zeithorizonten zu konzipieren, zu organisieren und durchzuführen. Hierzu greifen sie auf vorhandene Forschungsinfrastruktur zurück, die in ihrer Art und in ihrem Umfang in manchen Fällen national, gelegentlich sogar international einmalig ist. Zudem gewährleisten die Ingenieurwissenschaften an Universitäten die systematische Verschränkung technikrelevanter Forschung aller Zeithorizonte sowie des Erkenntnis- und Gestaltungsaspektes in den Ingenieurwissenschaften. Die disziplinäre Fortentwicklung und wissenschaftliche Selbstreproduktion ingenieurwissenschaftlicher Fachrichtungen ist auf dieser Basis nur an Universitäten institutionell möglich und damit langfristig und nachhaltig gewährleistet.

Die HAW haben im vergangenen Jahrzehnt ihren Auftrag zur technikrelevanten Forschung immer stärker wahrgenommen. Dies zeigt sich nicht nur an der Zunahme der Zahl der forschungsaktiven Professorinnen und Professoren, sondern vor allem...
4 Der Weg zum Exzellenzzentrum Baden-Württemberg

Entdifferenzierungsprozesse haben in der Vergangenheit dazu geführt, dass die ehemals klar definierten Unterschiede zwischen Universitäten und HAW ihre allgemeine und ausschließliche Gültigkeit verloren haben. Dies bezieht sich vornehmlich auf die historische Zuordnung von Grundlagenforschung zu Universitäten, zeigt sich aber auch in der zunehmenden Angleichung der Ausbildungsprofile an den beiden genannten Hochschultypen im Rahmen des Bologna-Prozesses, welcher auf andersartige, aber bezogen auf die Kompetenz gleichwertige Bachelor- und Master-Abschlüsse an allen Hochschultypen abzielt.

Die Entwicklung sollte aus Sicht der Arbeitsgruppe Forschung mit Blick auf die bestmögliche Nutzung der Entwicklungschancen der Hochschultypen durch komplementäre Ergänzung und Schärfung der Forschungsprofile fortgeführt werden. Hierbei müssen die bestehenden Unterschiede in Art, Struktur, Ausrichtung, Umfang und infrastruktureller Ausstattung der Forschung an Universitäten und HAW beachtet und im Rahmen institutionell abgesicherter Kooperationen bestmöglich eingebracht werden.

Die Ausrichtung ingenieurwissenschaftlicher Forschung impliziert für das Land Baden-Württemberg einerseits die Etablierung von Forschungsschwerpunkten an Standorten und in Regionen, die thematisch komplementär ausgerichtet sind. Aus nationaler und internationaler Perspektive bedeutet die strategische Ausrichtung der Ingenieurwissenschaften aber auch, Schwerpunktthemen für das gesamte Land Baden-Württemberg zu definieren.

Vor diesem Hintergrund wird die enorme Wichtigkeit des Bereiches Mobilität nicht nur für die Ingenieurwissenschaften in Baden-Württemberg, sondern für die gesamte Wertschöpfungsstruktur Deutschlands betont. Der Bereich Mobilität umfasst dabei zwar als zentralen Teil den Automobilbau, aber auch die Erforschung und Entwicklung nachhaltiger Lösungen in der Individualmobilität wie auch die Entwicklung hochintegrierter Verkehrskonzepte. Das Land Baden-Württemberg hat beste Voraussetzungen, in diesem Segment auch künftig führend zu sein und damit langfristig den größten und zuverlässigsten Wertschöpfungsmotor für Baden-Württemberg zu sichern und auszubauen.

Um die großen Erfolge der Erforschung und Entwicklung von Technologien, vor allem in den Bereichen Mobilität und Energie, nachhaltig in Wertschöpfung in Baden-Württemberg umsetzen zu können, sind auch die Produktionsarbeitsplätze in Baden-Württemberg zu halten und neu aufzubauen. Aus diesem Grund ist die Produktionsforschung in Baden-Württemberg unverzichtbar. Vor allem hoch wertschöpfende und
hochqualifizierte Produktionsarbeit muss langfristig in Baden-Württemberg gehalten und strategisch abgesichert werden.

Handlungsempfehlung 1:
Profile der Hochschultypen scharfen, kommunizieren und Kooperationen stärken

2. Die Profilbeschreibungen sollen insbesondere die komplementäre Ausrichtung technikrelevanter Forschung an Universitäten und HAW berücksichtigen. Dazu zählen die bedienten Zeithorizonte technikrelevanter Forschung sowie die Unterschiede in Art, Struktur, Ausrichtung, Umfang und infrastruktureller Ausstattung technikrelevanter Forschung an Universitäten und HAW.

schaftlicher Fakultäten in Baden-Württemberg zum jetzigen Zeitpunkt zwar nicht vorgeschrieben, aber auch nicht wirksam verhindert. Es wird vorgeschlagen, dass die Auferlegung von zusätzlich zu erbringenden Prüfungsleistungen als Voraussetzung zur Anmeldung einer Promotion durch Promotionsausschüsse künftig nur noch im Einverständnis mit den voraussichtlichen Betreuerinnen und Betreuern der Promotion festgelegt werden kann. **Die betroffenen Promotionsordnungen sind entsprechend zu ändern.**

6. Die Arbeitsgruppe empfiehlt zudem, auch nicht kooptierte Professorinnen und Professoren von HAW verstärkt in Promotionsverfahren als **gleichberechtigte Prüferinnen und Prüfer** sowie Gutachterinnen und Gutachter zu involvieren. Dazu muss durch ein **transparentes Verfahren** auf Basis der **fakultätsüblichen Evaluationskriterien** die wissenschaftliche Befähigung zur Mitwirkung als Gutachterinnen und Gutachter im jeweiligen Promotionsverfahren geklärt werden. Die **Qualitätskontrolle von Promotionsverfahren** durch die **Promotionsausschüsse** der Fakultäten muss dabei erhalten bleiben.

10. Studentinnen und Studenten an Universitäten, deren Begabungen die erfolgreiche Absolvierung eines Hochschulstudiums in eher angewandten Bereichen vermuten lassen, soll **frühzeitig ein moderierter Übergang an HAW** angeboten werden. Dabei ist darauf zu achten, dass dieser Übergang von den betroffenen Studentinnen und Studenten als **neue Chance** begriffen wird und bereits mit Erfolg abgelegte Studienleistungen möglichst von der aufnehmenden HAW anerkannt werden.
Entsprechende Maßnahmen sind so auszugestalten, dass sie zum Ziel, die **totale Abbrecherquote** bezogen auf das Feld der Ingenieurwissenschaften zu senken, bestmöglich beitragen.

Handlungsempfehlung 2:
Ingenieurwissenschaftliches Forschungsprofil für Baden-Württemberg weiterentwickeln

1. Die Arbeitsgruppe Forschung empfiehlt, **technikrelevante Forschung aller Zeithorizonte** in einem sinnvollen Maß, auszubalancieren. Hierzu sieht es die Arbeitsgruppe als zielführend an, dass kurzfristige, mittelfristige sowie langfristige Forschung zu je ungefähr einem Drittel im ingenieurwissenschaftlichen Forschungsportfolio Baden-Württembergs vertreten sind. Die genannten Anteile sind dabei als **Richtwerte** für die strategische Ausrichtung der Ingenieurwissenschaften in Baden-Württemberg im Allgemeinen sowie die Ausrichtung von Forschungsförderung im Besonderen zu verstehen. Sie zielen auf eine optimal und zukunftsorientiert aufgestellte **Spitzenforschung** vor allem im **Bereich der Universitäten**.

2. Die Arbeitsgruppe empfiehlt der Landesregierung, einen gemeinsamen **Strategiefindungsprozess** der Hochschulen in Baden-Württemberg anzuregen, der das Ziel verfolgt, eine gemeinsame **Förderstrategie** für **technikrelevante Forschung großer Zeithorizonte** und **interdisziplinärer Zusammenarbeit** in Baden-Württemberg zu erarbeiten und verbindlich zu vereinbaren. Die **Förderstrategie** soll dabei insbesondere **regionale Forschungsschwerpunkte** berücksichtigen. Zudem empfieht die Arbeitsgruppe, langfristige technikrelevante Forschung durch entsprechende **Leistungsanreize** wie beispielsweise **Forschungsprämien** zu unterstützen. Bereits vorhandene Leistungsanreize sind aktiv zu kommunizieren und regelmäßig auf den Bedarf ihrer Zielgruppe abzustimmen.

7. Zudem empfiehlt die Arbeitsgruppe, dass die Landesregierung die Notwendigkeit der Förderung ingenieurwissenschaftlicher Forschung bei der DFG aktiv herausstreicht.

Handlungsempfehlung 3: Ingenieurwissenschaftliche Forschung an gesellschaftlichen Herausforderungen ausrichten

2. Die Arbeitsgruppe empfiehlt zudem, Leistungsindikatoren in den Ingenieurwissenschaften an den Charakteristika des jeweiligen Wissenschaftsgebietes auszurichten. Bewährte Indikatoren, die die erkenntnisorientierte Bedeutung von Forschungsleistung (Erkenntnisaspekt) messen, sind um weitere quantifizierbare Leistungsfaktoren zu ergänzen, die die technisch umsetzbaren Beiträge zur Lösung gesellschaftlicher Herausforderungen (Gestaltungsaspekt) abbilden.
Handlungsempfehlung 4: Ingenieurwissenschaftliche Wertschöpfungsmotoren Baden-Württembergs stärken und weiterentwickeln

Handlungsempfehlung 5: Zusammenarbeit von Forschungseinrichtungen und Unternehmen stärken

3. Die Arbeitsgruppe empfiehlt, Forschungs- und Entwicklungsaktivitäten von KMU gezielt zu fördern. Hierzu haben sich in der Vergangenheit Förderinstrumente wie das Zentrale Innovationsprogramm Mittelstand als geeignet erwiesen. Die Ar-
beitsgruppe regt daher an, Instrumente zur Förderung von Forschungsaktivitäten in KMU strategisch weiterzuentwickeln und zu verstetigen. Förderinstrumente sind so auszulegen, dass Entwicklungsaktivitäten langfristig planbar sind. Insbesondere ist darauf zu achten, dass Förderinstrumente den Wissenstransfer von Forschungseinrichtungen in KMU gezielt anregen.

4. Zudem soll hierbei die steigende Bedeutung von IKT und neuen Materialien für KMU des Maschinenbaus berücksichtigt werden.

5. Die Arbeitsgruppe sieht Industry on Campus-Modelle als ein geeignetes Instrument an, Forschungskooperationen zwischen Hochschulen und Industrieunternehmen strategisch zu verankern, und betont den großen Mehrwert sowohl für die beteiligten Unternehmen als auch für die gastgebenden Hochschulen.

Handlungsempfehlung 6: Interdisziplinäre Zusammenarbeit fördern

3. Der Ausbau der Kooperationen zwischen Ingenieurwissenschaften und Naturwissenschaften ist ein wichtiger Faktor – vor allem im Bereich technikrelevanter Forschung großer Zeithorizonte. Der strategische Ausbau der Zusammenarbeit zwischen Ingenieurwissenschaften und Naturwissenschaften soll daher strukturiert und über Forschungseinrichtungen hinweg erfolgen und sich auf zukunftsträchtige Felder wie beispielsweise die gemeinsame Erforschung neuer Materialien fokussieren.

Zentren des Karlsruher Instituts für Technologie (KIT-Zentren)

Quelle: https://www.kit.edu/forschen/kit_zentren.php

4.2.3 Handlungsfeld 2: Investieren in die Zukunft – die Ingenieurwissenschaften an der Basis stärken

Ausgangsbasis

Die Tatsache, dass die DFG bei Bewilligungen prinzipiell die übliche Grundausstattung voraussetzt und DFG-Mittel als Ergänzungsausstattung versteht, verschärft das Problem fehlender Grundausstattung in den Ingenieurwissenschaften zusätzlich. Sofern die Ingenieurwissenschaften an Hochschulen unter deutscher Unterfinanzierung in ihrer Grundausstattung leiden, ist ihre Handlungsfähigkeit im Hinblick auf die Beantragung und Durchführung von DFG-Projekten erheblich eingeschränkt.

4.2 Forschung

nanzierte Mitarbeiterinnen und Mitarbeiter statt. Die Arbeitsgruppe warnt eindringlich vor den wirtschaftlichen, wissenschaftlichen und rechtlichen Risiken, die mit dieser Entwicklung verbunden sind.

Die Arbeitsgruppe weist ausdrücklich darauf hin, dass die infrastrukturellen und personellen Bedarfe und Randbedingungen der Ingenieurwissenschaften von derjenigen der Naturwissenschaften, der Lebenswissenschaften und der Geistes- und Sozialwissenschaften klar zu unterscheiden sind. Ingenieurwissenschaftliche Forschung ist aufgrund der großen Bedeutung des Gestaltungsaspektes im Allgemeinen und der traditionell in Baden-Württemberg sehr guten Vernetzung von Forschungseinrichtungen und Industrieunternehmen im Besonderen prädestiniert, substantielle und praxisrelevante Beiträge zur Erforschung und Entwicklung von Methoden, Artefakten und weiteren technischen Lösungen zu leisten, die in erfolgreiche Produkte und Dienstleistungen münden.

Im Umgang mit Drittmitteln innerhalb von Universitäten und HAW beobachtet die Arbeitsgruppe, dass zunehmend leistungshemmende Strukturen und Prozesse implementiert werden, die die Einwerbung industrieller und öffentlicher Drittmittel bestrafen, anstatt diese zu belohnen. Zunehmend greifen vor allem einige Universitäten zentral mit pauschalen Abgabesätzen auf die eingeworbenen Drittmittel zu, um damit zentrale Verwaltungseinheiten und defizitäre Institute und Lehrstühle zu finanzieren. Hierdurch geraten vor allem leistungsstarke Forschungseinheiten unter zusätzlichen Druck, der ihre Leistungsfähigkeit mindert. Die Arbeitsgruppe sieht pauschale Abgabesätze auf eingeworbene Drittmittel als den falschen Weg an, Finanzierungsschwierigkeiten zentraler Verwaltungseinheiten oder defizitärer Institute und Lehrstühle zu lösen.

Handlungsempfehlung 7: Grundfinanzierung an Universitäten und HAW ausbauen

Handlungsempfehlung 8: Zukunftsfähige Finanzierungsmodelle gestalten

1. Die Arbeitsgruppe empfiehlt eine ausgewogene Förderstruktur mit insgesamt klarer Fokussierung auf Universitäten und HAW, da diese die gesellschaftliche Aufgabe des Transfers neuester wissenschaftlicher Erkenntnisse in die Bildung und Ausbildung der nächsten Generation sicherstellen können. Die Arbeitsgruppe ruft die Landesregierung dazu auf, die zusätzlichen Möglichkeiten der Grundfinanzierung für die Ingenieurwissenschaften, die die Novellierung des Artikels 91b des Grundgesetzes bietet, auszuloten und auf Bundesebene aktiv einzubringen.

2. Landesfinanzierte, außeruniversitäre Forschungseinrichtungen wie die Institute der Innovationsallianz sollen in Bezug auf die relative Grundfinanzierung und deren Steigerungsraten mit bundesfinanzierten Forschungseinrichtungen gleichgestellt werden, um ihren besonderen Auftrag für das Land weiterhin leisten zu können. Die Zusammenarbeit von Universitäten, HAW, außeruniversitären Forschungseinrichtungen und Instituten der Innovationsallianz sollte strategisch ausgebaut und weiter gestärkt werden.

4.2.4 Handlungsfeld 3: Es geht um die Köpfe – Exzellente Ingenieurinnen und Ingenieure für Baden-Württemberg ausbilden

Ausgangsbasis

Die Arbeitsgruppe nimmt mit Sorge wahr, dass der Anteil weiblicher Schulabsolventinnen mit Hochschulreife, die ein ingenieurwissenschaftliches Studium aufnehmen, nach wie vor deutlich zu gering ist\(^\text{56}\). Vorrangig sieht die Arbeitsgruppe jedoch das Problem, dass das Image der MINT-Fächer in der Gesellschaft insgesamt deutlich zu schlecht ist.

Handlungsempfehlung 9: Attraktivität wissenschaftlicher Karrierewege steigern

2. Der Erwerb interdisziplinärer Kompetenz muss systematischer und stärker gefördert werden. Die Arbeitsgruppe schlägt hierzu die Etablierung geeigneter Angebote vor, die im Rahmen der Assistenzpromotion strukturiert als Baustein für den individuellen Kompetenzerwerb angeboten werden sollen.

7. Die Arbeitsgruppe sieht in geeigneten Einzelfällen, insbesondere bei Wissenschaftlerinnen und Wissenschaftlern mit Industrieerfahrung, die Einrichtung von Juniorprofessuren mit Tenure-Track als geeignetes Mittel an, die Attraktivität und Planbarkeit ingenieurwissenschaftlicher Karrieren deutlich zu erhöhen.

Handlungsempfehlung 10: MINT-Fächer stärken

4.2.5 Handlungsfeld 4: Organisationsstrukturen und Forschungsinfrastruktur – Schlanke Prozesse in der Forschung etablieren

Ausgangsbasis

Die Arbeitsgruppe sieht die große Chance, durch geeignete Vernetzung vorhandener Infrastrukturen sowie die Abstimmung zwischen interessierten Akteuren bei der Anschaffung neuer Forschungsinfrastruktur, Synergiepotenziale für alle Beteiligten zu
4.2 Forschung

In Bezug auf die nachhaltige Absicherung des Bestandes an Forschungsinfrastruktur sieht die Arbeitsgruppe die Gefahr, dass heute durch ungeeignete Rechnungslegungsverfahren Abschreibungen auf vorhandene Einrichtungen nicht genügend und teils überhaupt nicht berücksichtigt werden. Hierdurch sind notwendige Reinvestitionen in manchen Fällen nicht möglich, was die Forschungsstärke der betroffenen Einrichtungen mindert und die Planungssicherheit untergräbt.

Die Arbeitsgruppe zeigt sich besorgt über das teilweise massive Überhandnehmen von Verwaltungsaufgaben an Universitäten und HAW. Betroffene Wissenschaftlerinnen und Wissenschaftler klagen über unbegründete oder redundante, bürokratische Vorgaben, die die eigentlich wertschöpfende Tätigkeit in Forschung und Lehre unterminieren. Diese Verwaltungsprozesse werden häufig durch pauschale Abgabesätze auf eingeworbene Drittmittel refinanziert, was zu einer ungünstigen Anreizstruktur bei operativ forschenden und lehrenden Einheiten und bei zentralen, administrativen Einheiten führt.

Handlungsempfehlung 11:
Konzepte gemeinsamer Nutzung vorhandener Infrastruktur entwickeln

1. Die Arbeitsgruppe Forschung empfiehlt das Erarbeiten eines Vernetzungs- und Kooperationsmodells für die Forschungsinfrastruktur an Universitäten und HAW in Baden-Württemberg. Das Modell soll dabei einerseits vorhandene Forschungsinfrastruktur berücksichtigen, andererseits auch als Orientierungshilfe für künftig...
zu beschaffende Forschungsinfrastruktur dienen. Das Modell soll so ausgelegt sein, dass es die unbürokratische Nutzung von Forschungsinfrastruktur durch Forscher anderer Einrichtungen zu transparenten Bedingungen ermöglicht.

3. Die Arbeitsgruppe weist auf die Notwendigkeit hin, Rechnungslegungsverfahren an Universitäten und HAW so auszurichten, dass Abschreibungen auf vorhandene Forschungsinfrastruktur berücksichtigt und entsprechende Rücklagen für Reinvestitionen gebildet werden.

Handlungsempfehlung 12: Verwaltungsprozesse entbürokratisieren und die Dezentralisierung von Entscheidungen weiter vorantreiben

2. Die Arbeitsgruppe empfiehlt, die administrative Abwicklung von Forschungsprojekten an Universitäten und HAW in Baden-Württemberg zu vereinfachen.

4.2.6 Zusammensetzung der Arbeitsgruppe Forschung

Mitglieder der Arbeitsgruppe Forschung:

Hr. Prof. Dr.-Ing. Dr. h. c. Albert Albers (Karlsruher Institut für Technologie) (Leiter der Arbeitsgruppe)
Hr. Dr.-Ing. Jörg Böcking (Freudenberg Gruppe)
Hr. Prof. Dr. rer. nat. Michael Decker (Karlsruher Institut für Technologie)
Hr. Prof. Dr.-Ing. Gerhard Kachel (Hochschule Offenburg)
Hr. Prof. Dr. rer. nat. Alfred Leitenstorfer (Universität Konstanz)
Hr. Prof. Dr.-Ing. Detlef Löhe (Karlsruher Institut für Technologie)
Hr. Prof. Dr.-Ing. Peter Middendorf (Universität Stuttgart)
Fr. Prof.in Dr. rer. nat. Britta Nestler (Karlsruher Institut für Technologie, Hochschule Karlsruhe Technik und Wirtschaft)
Fr. Prof.in Dr.-Ing. Nejila Parspour (Universität Stuttgart)
Hr. Prof. Dr. rer. nat. Ralf Reussner (Karlsruher Institut für Technologie; Forschungszentrum Informatik)
Hr. Prof. Dr.-Ing. Dr. h.c. Oliver Sawodny (Universität Stuttgart)
Hr. Prof. Dr. rer. nat. Hans-Joachim Werner (Universität Stuttgart)
Fr. Prof.in Dr. rer. nat. Martina Zitterbart (Karlsruher Institut für Technologie)

Teilnehmerinnen und Teilnehmer des Sounding Boards:

Hr. Joachim Bereth (John Deere GmbH & Co. KG)
Hr. Bernd Danckert (DIF DIE IDEENFABRIK GmbH)
Hr. Christian Erbe (ERBE Elektromedizin GmbH)
Hr. Martin Hubschneider (CAS Software AG)
Hr. Dr.-Ing. Dirk Klug (Schuler Pressen GmbH)
Hr. Dirk Lappe (Porsche Engineering Group GmbH)
Hr. Prof. Dr.-Ing. Peter Post (Festo AG & Co. KG)
Hr. Dr. sc. techn. Christoph Puls (PULSGETRIEBE GmbH & Co. KG)
Hr. Dr.-Ing. Klaus-Peter Schnelle (Robert Bosch GmbH)
Hr. Dr.-Ing. Dirk Schweinberger (tech-solute GmbH & Co. KG)
Hr. Dr.-Ing. Andreas Stuffer (Schaeffler AG)
Hr. Dr.-Ing. Martin Tietz (Voith Paper GmbH & Co. KG)
Hr. Dr. rer. nat. Hans-Peter Trah (Robert Bosch GmbH)
Hr. Dr. rer. nat. Christian Zeidler (ABB AG)
4.3 Transfer und Zusammenarbeit

4.3.1 Was ist guter Technologietransfer?

Innovationen im KMU- und Start-up-Bereich brauchen deshalb eine starke Förderung des Technologietransfers von der Wissenschaft in die Wirtschaft. Umgekehrt muss auch die Wirtschaft Anforderungen an die Wissenschaft formulieren, so dass ein agiler, schneller Regelkreis entsteht, der Wissenschaft und Wirtschaft weltweit eine Spitzenposition sichert. Derzeit sind es in erster Linie Großunternehmen, die von dieser Förderung profitieren, was gut ist und auch nicht geschwächt werden darf.

Die wesentlichen Prozesse des Technologietransfers zwischen Wissenschaft und Industrie können über drei Kanäle in beide Richtungen laufen:

(1) Transfer über Köpfe
(2) Transfer über Projekte/Maßnahmen
(3) Transfer über Ausbildung, Seminare, Lizenzvergabe, IP

Guter Technologietransfer zeichnet sich durch folgende Eigenschaften aus:

- Fokussierung und Strategie in Bezug auf Produkt- und Dienstleistungsinnovationen
- Leidenschaft und Hunger nach wirtschaftlichem Erfolg und gesellschaftlicher Anerkennung
- Räumliche Nähe von Wissenschaft und Wirtschaft
- Vertrauen zwischen den beteiligten Partnern
- Die richtigen Rahmenbedingungen in Hinblick auf Einfachheit, Schnelligkeit und unbürokratischen Zugang zu Finanzierungsmöglichkeiten
- Lebendige Gründungskultur und Start-up-Szene
- Sichtbarkeit und Messbarkeit

Guter Technologietransfer misst sich in den Ingenieurwissenschaften vor allem am wirtschaftlichen Erfolg innovativer Produkte „Made in Baden-Württemberg“, die anspruchsvolle Arbeitsplätze und nachhaltigen Wohlstand in der Region sichern. Die Entwicklung einer Gründungskultur bereits auf dem Hochschulcampus unterstützt
4.3 Transfer und Zusammenarbeit

dieses Ziel. Dazu bedarf es Professorinnen und Professoren, die neben der Freiheit in Forschung und Lehre vor allem die Freiheit des Unternehmertums nutzen und erfolgreiche Start-ups als Exzellenzbotschafter mit weltweitem Ansehen gründen. Guter Technologietransfer schafft also Freiräume und Möglichkeitsräume auf dem Hochschulcampus, um aus dem Zweiklang aus Forschung und Lehre einen Dreiklang aus Forschung, Lehre und Unternehmertum zu machen. Das Silicon Valley oder Tel Aviv sind dafür gute, weltweit sichtbare Beispiele.

4.3.2 Stärken-Schwächen-Analyse

Stärken

Wirtschaftlich starker Hochtechnologiestandort

Kern sind die industriellen Hochtechnologiebranchen Fahrzeugbau, Maschinenbau, Elektrotechnik und mit etwas Abstand die technischen und FuE-Dienstleistungen sowie der IKT-Bereich. Die Hochtechnologiebranchen hatten 2013 im Land einen Wertschöpfungsanteil von gut 21 Prozent, in ganz Deutschland nur von rund 12 Prozent. Im Fahrzeugbau und im Maschinenbau betrug dieser Anteil mehr als die Hälfte am Gesamtnachfrage dieser Branchen in Deutschland. Der Anteil der Beschäftigten in diesen Branchen belief sich im Land auf 13 Prozent, während er in Deutschland nur knapp 8 Prozent erreichte163.

Leistungsfähige Hochschul- und Forschungslandschaft

Zum Wintersemester 2013/14 gab es an den Hochschulen knapp 345.000 Studentinnen und Studenten, davon mehr als 77.000 Studentinnen und Studenten (gut 22 Prozent) in den Ingenieurwissenschaften. Auf die Universitäten entfielen davon fast 29.000 Studentinnen und Studenten (38 Prozent), auf die HAW knapp 39.000 Studentinnen und Studenten (50 Prozent) und auf die DHBW über 12.000 Studentinnen und Studenten (12 Prozent). Der Anteil an der Gesamtzahl der Studentinnen und Studenten in den Ingenieurwissenschaften in Deutschland betrug gut 15 Prozent171.

Hochentwickeltes Technologietransfersystem

Neben der vorwettbewerblichen Projektförderung gewinnen Formate einer stärker institutionalisierten Zusammenarbeit zwischen Hochschulen und Unternehmen an Bedeutung (Industry on Campus-Projekte). In solchen strategischen Partnerschaften legen Hochschulen und Unternehmen gemeinsam die Forschungsagenda fest, arbeiten in einer Einrichtung auf dem Hochschulgelände zusammen und kommen gemeinsam für die Kosten auf.

Für die Entwicklung des Technologietransfersystems steht im Land ein breites Förderspektrum zur Verfügung. Die Maßnahmen reichen von der Grundfinanzierung verschiedener Einrichtungen über die Förderung kooperativer Forschungsprojekte und die Unterstützung von Unternehmensgründungen bis zu Anreizen für FuE-Aktivitäten in KMU durch Innovationsgutscheine.

Innovationsfreundliche Rahmenbedingungen

Seit 1995 ist der Technologietransfer als Kernaufgabe der Hochschulen und als Dienstaufgabe der Professorinnen und Professoren im LHG verankert. Dort ist auch

Schwächen

Drohende Engpässe bei Ingenieurinnnen und Ingenieuren

Genauso wichtig wie die Quantität ist die Qualifikation der künftigen Ingenieurinnen und Ingenieure. Nicht nur in der Umfrage, die das ZEW im Auftrag der Kommission durchgeführt hat, kritisierten die Unternehmensvertreter die Spezialisierung und die Intransparenz der Studiengänge sowie die zerfliessende Kompetenzdifferenzierung zwischen den Universitäten, den HAW und der DHBW. Sie forderten eine breite Grundlagenaußbildung mit Spezialisierung erst im Masterstudium, die stärkere Vermittlung von Systemkompetenz und Interdisziplinarität sowie von profunden IT-Kenntnissen. Die Ingenieurausbildung der Zukunft muss sich daran messen lassen, ob sie dieses Kompetenzprofil vermittelt.

„Zwei Kulturen im Technologietransfer“

a) Zäher Kulturwandel

b) Ambivalenter Stellenwert des Technologietransfers in den Hochschulen

Der Technologietransfer ist seit langem auch rechtlich die dritte Mission der Hochschulen. Im Spannungsverhältnis zwischen den verschiedenen Aufgaben der Hochschulen sowohl auf der institutionellen als auch auf der persönlichen Ebene der Wissenschaftlerinnen und Wissenschaftler und angesichts der kontinuierlichen Zunahme der quantitativen und qualitativen Anforderungen an die Hochschulen und ihren Lehrkörper steht er aber nicht gleichwertig neben den klassischen Aufgaben Lehre und Forschung. An dieser Rangfolge kann auch eine Umfrage des Stifterverbandes, in der sich 2013 die große Mehrheit der Hochschulleitungen für eine verstärkte Zusammenarbeit mit der Wirtschaft in der Forschung ausgesprochen hat, nichts ändern.

Im Leitbild und in der Außendarstellung der Hochschulen spielt der Technologietransfer in der Regel nur eine nachgeordnete Rolle. An vielen Hochschulen fehlt eine aufgabenintegrierende sowie personell und materiell unterlegte Strategie für den
Technologietransfer. Um dies zu ändern, müssen die traditionellen Wertemuster der Hochschulen, orientiert an den innovationspolitischen Herausforderungen, weiterentwickelt werden.

c) Konfliktreiches Patent- und Lizenzmanagement

Zwischenzeitlich wurden Musterverträge für Auftragsforschung und Forschungskooperationen erarbeitet\(^{183}\). Das Wissenschaftsministerium hat den Hochschulen empfohlen, diese Verträge in ihren Verhandlungen mit Unternehmen zu verwenden; die Resonanz ist bisher gering. Dies ist auch darauf zurückzuführen, dass nur wenige Hochschulen über eine Verwertungsstrategie verfügen und Leitlinien für ihr Patent- und Lizenzmanagement entwickelt haben.

d) Fehlende Validierung von Forschungsergebnissen

Validierung des technologischen und gesellschaftlichen Innovationspotenzials wissenschaftlicher Forschung – VIP+

Die Fördermaßnahme VIP+ unterstützt Wissenschaftlerinnen und Wissenschaftler dabei, das Innovationspotenzial von Forschungsergebnissen zu prüfen und nachzuweisen sowie mögliche Anwendungsbereiche zu erschließen. So schaft VIP+ die Voraussetzungen für die Weiterentwicklung von Forschungsergebnissen zu innovativen Produkten, Prozessen oder Dienstleistungen.

Quelle: https://www.bmbf.de/de/vip-technologische-und-gesellschaftliche-innovationspotenziale-erschliessen-563.html
e) Nachholbedarf bei strategischen Forschungskooperationen

Der globale Innovationswettbewerb zwingt zu neuen strategischen Partnerschaften, in denen der Wissens- und Technologietransfer mit einer größeren kritischen Masse, in räumlicher Nähe „on campus“, mit längerfristiger Perspektive sowie organisatorisch und finanziell stärker institutionalisiert auf der Grundlage einer gemeinsamen Forschungsagenda betrieben wird. Die zunehmende Verlagerung von FuE- Aktivitäten und FuE-Ausgaben aus den Unternehmen deutet neben den zugrunde liegenden Kostenüberlegungen auf eine größere Offenheit der Unternehmen für die Vorteile einer intensiveren Zusammenarbeit mit Hochschulen und Forschungseinrichtungen hin und eröffnet zusätzliche Chancen.

In diesen neuen Kooperationsstrukturen können im vorwettbewerblichen Bereich die Grundlagenforschung der Universitäten und die strategische Vorlaufforschung der Unternehmen zur interdisziplinären Bearbeitung komplexer Fragestellungen in Schlüsseltechnologien und Zukunftsfeldern mit hohem Forschungsbedarf zusammengeführt werden. Voraussetzung dafür ist, dass solche Initiativen von den Unternehmen ausgehen und beide sich ressourcenmäßig entsprechend beteiligen.

f) Intransparenz und Komplexität des Technologietransfersystems

In Zukunft sollten die Effizienz und die Zielerreichung der einzelnen Technologietransfer-Aktivitäten kontinuierlich überprüft werden. Dabei geht es nicht nur um eine Bewertung der Leistungsbilanz, sondern gleichzeitig auch um die Identifizierung von Erfolgsfaktoren und Hemmnissen, die bei künftigen Transfermaßnahmen berücksichtigt werden müssen, um Effizienz und Effektivität der Förder- und Transfermaßnahmen zu verbessern. Trotz der Komplexität, Differenziertheit und Interdependenz des Technologietransfersystems muss sich die Landesregierung der Herausforderung stellen, mit den Hochschulen, den Forschungseinrichtungen und der Wirtschaft dafür ein transparentes, robustes und verlässliches Kennzahlensystem zu entwickeln.
Schwache Gründungsaktivitäten in den Hochschulen und außeruniversitären Forschungseinrichtungen

EXIST-Förderprogramm

EXIST ist ein Förderprogramm des Bundesministeriums für Wirtschaft und Energie (BMWi), welches Hochschulabsolventinnen und -absolventen, Wis senschaftlerinnen und Wissenschaftler sowie Studentinnen und Studenten bei der Vorbereitung ihrer technologieorientierten und wissensbasierten Existenzgründungen unterstützt. Ziel ist es, das Gründungsklima an Hochschulen und außeruniversitären Forschungseinrichtungen zu verbessern.

Quelle: http://www.exist.de/DE/Programm/Urier-Exist/inhalt.html

Förderprogramm „Junge Innovatoren“

Das Förderprogramm „Junge Innovatoren“ hilft jungen wissenschaftlichen Mitarbeiterinnen und Mitarbeitern aus Hochschulen und außeruniversitären Forschungseinrichtungen dabei, sich zur Herstellung und zum Vertrieb von innovativen Produkten oder Verfahren selbstständig zu machen.

Quelle: http://www.junge-innovatoren.de/
Deutschland Platz 16 unter 18 erfassten Ländern197. Nachteilig ist auch, dass Absolvenzinnen und Absolventen in den MINT-Fächern nur ein Viertel der Gründerinnen und Gründer aus Hochschulen ausmachen193 und Hochschulabsolventinnen – wie allgemein im Gründungsgeschehen194 – auch bei den Gründungsaktivitäten in Hochschulen und außeruniversitären Forschungseinrichtungen unterrepräsentiert sind.

Verantwortlich für diese Situation sind neben der Wirtschaftsstruktur mit ihren guten Beschäftigungs- und Verdienstmöglichkeiten die fehlende Kultur und Wertschätzung unternehmerischer Selbstständigkeit und Gründung sowie eine unzureichende gründungsbezogene Ausbildung in den deutschen Hochschulen. In der angeführten Studie wünschten sich mehr als die Hälfte der befragten deutschen Studentinnen und Studenten mehr gründungsrelevante Studienangebote und Maßnahmen. Die Universität im angelsächsischen Raum bieten nicht nur für „Graduate“-Studentinnen und -Studenten, sondern teilweise schon für „Undergraduate“-Studentinnen und -Studenten zahlreiche Entrepreneurship-bezogene Kurse und andere Maßnahmen im und neben dem Fachstudium an, organisieren in „startup centres“ schon für Studentinnen und Studenten personelle und technische Unterstützung und setzen dafür gezielt Mentorinnen und Mentoren aus ihren aktiven Alumni-Organisationen195 ein.

Hinzu kommt, dass der Lehrkörper an amerikanischen Forschungsuniversitäten deutlich gründungsaktiver ist als an deutschen Hochschulen196. Professorinnen und Professoren sind als Gründer wichtige Vorbilder und Promotoren für gründungsinteressierte Studentinnen und Studenten. Die vergleichsweise geringe Gründungsbereitschaft des Lehrkörpers an deutschen Hochschulen ist neben unterschiedlichen Werte- und Berufsmustern zum einen auf rechtliche und finanzielle Rahmenbedingungen, die z.B. die Nutzung eigener Patente und eine Unternehmensbeteiligung erschweren, und zum anderen darauf zurückzuführen, dass eine erfolgreiche Ausgründung im institutionellen Anreizsystem der Hochschulen als Bewertungsgröße bisher keine Rolle spielt197.

\textit{Innovationsprobleme in kleinen und mittleren Unternehmen (KMU)}

Entwicklungen sind jedoch nicht zu übersehen, die angesichts des internationalen Innovationswettbewerbs die Innovationsfähigkeit und Leistungskraft der KMU gefährden. Seit Jahren gehen sowohl die Zahl der innovationsaktiven KMU als auch die Zahl von Patentanmeldungen durch KMU zurück. Bei den Innovationsausgaben und bei der Innovationsintensität öffnet sich die Schere zwischen Großunternehmen und

Materielle Rahmenbedingungen

Für einen erfolgreichen Technologietransfer benötigen die Hochschulen und die Forschungseinrichtungen eine ausreichende personelle und materielle Ausstattung sowie eine qualitativ hochwertige technische Infrastruktur. Hochschulen haben in der Regel erhebliche Schwierigkeiten, diese technische Infrastruktur bereitzustellen und kontinuierlich zu modernisieren.

Die **FuE-Intensität** betrug 2013 in Baden-Württemberg 4,8 Prozent. Auf die Wirtschaft entfielen 80 Prozent, auf die Hochschulen und die außeruniversitären Forschungseinrichtungen (Staatssektor) jeweils 10 Prozent. Knapp 2,2 Milliarden Euro gaben die Hochschulen 2013 für Forschung und Entwicklung aus. Diese vergleichsweise hohen FuE-Ausgaben ändern jedoch nichts daran, dass das Land bei der FuE-Intensität sowohl im **Hochschulsektor** als auch im **Staatssektor** mit einem Anteil von knapp über
bzw. knapp unter 0,5 Prozent im Ländervergleich nur im Mittelfeld lag. Die Anteile haben sich seit Jahren nicht verändert264.

4.3.3 \textbf{Handlungsfeld 1: Ich geh’ nach Baden-Württemberg – Exzellenzzentrum Ingenieurwissenschaften Baden-Württemberg entwickeln}

\textit{Ausgangsbasis}

Das dichte und differenzierte Innovationssystem in Baden-Württemberg aus Hochschulen, außeruniversitären Forschungseinrichtungen, Großunternehmen und KMU bildet eine leistungsstarke Grundlage, um das Land insgesamt zu einem \textit{Exzellenzzentrum} in den Ingenieurwissenschaften auszubauen. Im \textit{Wechselspiel von Wettbewerb und Zusammenarbeit} zwischen den Einrichtungen kann sich eine - auch im internationalen Maßstab beispielgebende - \textit{Modellregion} innovationsorientierter und wettbewerbsfähiger Ingenieurwissenschaften entwickeln, in der die unterschiedlichen branchen-, unternehmens- und technologiespezifischen Innovationsbedarfe quantitativ und qualitativ, fachlich und geographisch sowohl in der Spitze als auch in der Breite abgedeckt werden.

Handlungsempfehlungen

Hochschulen
- Bereitstellung eines qualifizierten Studienangebots in den Ingenieurwissenschaften zur Stärkung des Technologietransfers über Köpfe
- Sicherung einer multidisziplinären Grundausbildung im Bachelorstudium
- Spezialisierung erst im Masterstudium
- Sicherung von Freiräumen für Industriepraktika im Bachelorstudium
- Integration von interdisziplinären Kompetenzen und Soft Skills durch den Einbau entsprechender Studienmodule aus den Natur-, Wirtschafts- und Sozialwissenschaften
- Stärkung von Eigeninitiative und Unternehmertum bei den Studentinnen und Studenten – Reduzierung der Verschulung
- Ausbau der Studiengänge und der Kursangebote in der berufsbegleitenden wissenschaftlichen Weiterbildung mit einem entsprechenden materiellen Anreizsystem
- Strategische fachliche Schwerpunktsetzung unter Berücksichtigung der für Baden-Württemberg wichtigen Zukunftsfelder, die sich im Technologietransfer sichtbar niederschlägt
- Förderung einer technologietransferfreundlichen Kultur an den Hochschulen durch Einstellung von Professorinnen und Professoren mit industriell oder Gründerhintergrund
- Schaffung attraktiver familienfreundlicher Arbeitsbedingungen

Wirtschaft
- Bereitstellung einer ausreichenden Zahl von Praktikumsplätzen
- Schaffung attraktiver familienfreundlicher Arbeitsbedingungen

Landesregierung
- Förderung einer innovationsfreundlichen öffentlichen Atmosphäre
- Gewährleistung konkurrenzfähiger materieller und rechtlicher Rahmenbedingungen für die Hochschulen im Wettbewerb um die besten Köpfe
- Gestaltung attraktiver Studienbedingungen
 - Schaffung zeitlicher Freiräume im Studium z.B. durch die Möglichkeit eines vertieft grundlagenorientierten 4-jährigen Bachelor-Studiums, an das sich ein 2-jähriges Master-Studium anschließt
 - Ausreichende Finanzierung einer bedarfsgerechten Zahl von Studienplätzen in den Ingenieurwissenschaften und eines qualitativ hochwertigen Studienangebots
- Entwicklung des Exzellenzzentrums durch landesweit abgestimmte strategische Schwerpunktsetzungen
- Sicherung der Finanzierung der kurz-, mittel- und langfristigen Forschung an den Hochschulen und den außeruniversitären Forschungseinrichtungen, die dem Anspruch einer international führenden Rolle gerecht wird
- Identifizierung der für Baden-Württemberg wichtigen Zukunftsfelder sowie Definition der Exzellenzkriterien
- Landesweiter Masterplan für die gemeinsame Beschaffung und Nutzung teurer wissenschaftlich-technischer Infrastruktur
+ Erweiterung bestehender Förderprogramme zur Bildung von Forschungsschwerpunkten an Hochschulen und außeruniversitären Forschungseinrichtungen auch mit dem Ziel des Auf- und Ausbaus wettbewerbsfähiger Forschungsregionen
+ Auflage eines Förderprogramms zur interdisziplinären Bearbeitung visionärer Themen zur Lösung der großen technologischen und gesellschaftlichen Herausforderungen
+ internationale Vermarktung des Exzellenzzentrums

4.3.4 Handlungsfeld 2: Gemeinsam stark – Zusammenarbeit zwischen Wissenschaft und Wirtschaft weiterentwickeln

Ausgangsbasis

Der Transfer von Ideen, Erfahrungen und Forschungsergebnissen funktioniert nicht als Einbahnstraße, sondern ist ein wechselseitiger und rückkoppelter Austauschprozess zwischen Hochschulen, Forschungseinrichtungen und Unternehmen zum gegenseitigen Nutzen. Dafür müssen Technologiegenese, Technologieproduktion und Technologietransfer noch stärker zusammengebracht werden.

Handlungsempfehlungen

Hochschulen

- Verankerung des Technologietransfers als eigener Verantwortungsbereich auf der strategischen Ebene der Hochschulleitung als Chefsache und im Leitbild sowie stärkere Berücksichtigung in der Außendarstellung
- Erweiterung des institutionellen Anreizsystems der Hochschulen durch stärkere Anerkennung von Erfolgen in Technologietransfer- und Verwertungsaktivitäten, z.B. Berücksichtigung bei Berufungen, Aufgabenentlastung und finanzielle Zuschläge sowie stärkere Würdigung dieser Aktivitäten in der Hochschul- und der allgemeinen Öffentlichkeit
- Beibehaltung des Kriteriums Industrieerfahrung bei Berufungen in den Ingenieurwissenschaften an den HAW; stärkere Gewichtung der Transferkompetenz bei Berufungen an den Universitäten
- Beibehaltung der klassischen „Assistenz-Promotion“ an den Universitäten sowie der Promotion in Kooperation mit Unternehmen; kein Ersatz dieser Modelle durch die strukturierte Promotion (Graduiertenschulen)
- Stärrere Zusammenarbeit zwischen den Hochschulen und der Industrie durch gemeinsam finanzierte Professoraten (shared professorships) sowie einen befristeten Personalautausch von Mitarbeiterinnen und Mitarbeitern
- Verwendung der vom Innovationsrat ausgearbeiteten Musterverträge für Forschungskooperationen mit Unternehmen als Grundlage für die Verhandlungen
- Entwicklung von Leitlinien für das Patent- und Lizenzmanagement (IP-Strategie); offene und kritische Überprüfung der Rolle der TLB mit dem Ziel einer effizienteren
hochschulinternen und landesweit abgestimmten Patentverwertung

Wirtschaft

- Verstärkung der Zusammenarbeit bei Bachelor- und Master-Abschlussarbeiten unter Beachtung der akademischen Anforderungen
- Ausbau der Kooperations- und Auftragsforschung zur Ausschöpfung des Forschungspotenzials der Hochschulen und Forschungseinrichtungen in Baden-Württemberg
- Steigerung der Zahl langfristiger und strategischer institutioneller Kooperationen insbesondere mit Universitäten mit gemeinsamer Finanzierung
- Intensivierung des Personalaustauschs mit Hochschulen und Forschungseinrichtungen im Forschungsbereich
- Erhöhung der Zahl finanziert Forschungskooperationen mit Promotionsmöglichkeiten und verstärkte Mitfinanzierung von Graduiertenkollegs
- Verstärkter Einsatz von Mitarbeiterinnen und Mitarbeitern als Lehrbeauftragte durch Anerkennung dieses Engagements und Unterstützung dieser Mitarbeiterinnen und Mitarbeiter bei Zeitaufwand und Reisekosten

Landesregierung

- Bedarfsorientierte Weiterförderung von Netzwerken, Forschungsallianzen und Clustern bei regelmäßiger Evaluation ihrer Effizienz und Innovationsfähigkeit sowie kontinuierlicher Verbesserung der Transparenz des Technologietransfersystems
- Ausbau der Förderung von langfristigen und strategischen institutionellen Kooperationen zwischen Universitäten und Unternehmen („Industry on Campus-Vorhaben“) in Leitbranchen des Landes und in Schlüsseltechnologien unter Einbeziehung von HAW und KMU
- Erweiterung des Förderprogramms „Zentren für Angewandte Forschung an Hochschulen für Angewandte Wissenschaften“ mit dem Ziel, auch kleinere regionale „Industry on Campus-Projekte“ aus mehreren HAW und KMU aufzubauen, um deren Teil hohes Innovationspotenzial zu nutzen
- Überprüfung der rechtlichen Rahmenbedingungen für eine stärkere leistungsorientierte Berücksichtigung von erfolgreichen Aktivitäten im Technologietransfer im persönlichen und institutionellen Bereich
- Ergänzung des Landesforschungspreises um einen Landesinnovationspreis für erfolgreiche Aktivitäten im Technologietransfer

4.3.5 Handlungsfeld 3: Gute Rahmenbedingungen sind unabdingbar – Transferprozesse beschleunigen

Ausgangsbasis

Umfragen unter KMU bestätigen immer wieder, dass sie der Faktor Zeit erheblich unter Druck setzt. Die Komplexität des Innovationsprozesses durch Beteiligung unterschiedlicher Personen, Organisationen und Ebenen erschwert den Innovationsprozess und verlängert die „Time to Market“. Sie muss durch eine verbesserte Transparenz des Förderspektrums und durch eine Verringerung des administrativen Aufwands bei Forschungskooperationen verkürzt werden.

Handlungsempfehlungen

Hochschulen

- Überprüfung der Strukturen und Verfahren bei der Abwicklung von Forschungsprojekten insbesondere mit KMU, um die Innovationsneigung in den KMU zu erhöhen
- Bereitstellung kostenintensiver technischer Infrastruktur insbesondere zur Nutzung durch KMU bei angemessener Nutzungs- und Kostenregelung

Wirtschaft

- Akzeptanz der Rahmenbedingungen des Arbeitnehmererfindungsgesetzes bei der Patentierung und Lizenzierung von Forschungsergebnissen auf der Grundlage vorliegender Musterverträge zur Beschleunigung der Verhandlungen und im Sinne eines fairen Interessenausgleichs
- Häufigere Nutzung des Innovationspotenzials der Hochschulen durch KMU durch direkte Einbeziehung von Professorinnen und Professoren in die Produktentwicklung und den Produktionsprozess

Landesregierung

- Förderung der Entwicklung eines Wegweisers durch das komplexe Fördersystem und die Vielfalt der Technologieanbieter insbesondere für KMU
- Zielspezifische und passgenaue Ausrichtung der Förderprogramme auf die Bedürfnisse der KMU
- Profilierung der HAW als regionale Innovationsmotoren durch Verstärkung der Projektförderung mit KMU und Bereitstellung einer bedarfsgerechten technischen Infrastruktur zur gemeinsamen Nutzung
- Überprüfung des besonderen Forschungsauftrags der DHBW, um ihr Innovationspotenzial für KMU breiter nutzbar zu machen
4.3 Transfer und Zusammenarbeit

- Einrichtung eines Förderprogramms zum **Aufbau neuer** bzw. **zusätzlicher personeller Innovationskapazitäten** in KMU mit gemeinsamer häufiger Finanzierung und Übernahmeverpflichtung der KMU nach der Förderung
- Einrichtung eines **Validierungsfounds zur schnelleren Kommerzialisierung** von Forschungsergebnissen
- Einführung einer **Overhead-Prämie** für die Hochschulen für FuE-Projekte mit KMU
- Erweiterung des finanziellen Rahmens bei den **Innovationsgutscheinen** des Landes auch im Sinne einer Forschungsprämie, um angesichts der hohen Kosten, die für KMU mit Kooperationsprojekten verbunden sind, die Zusammenarbeit mit Hochschulen und Forschungseinrichtungen zu erleichtern

4.3.6 Handlungsfeld 4: Durchstarten! – Unternehmensgründungen aus Hochschulen und Forschungseinrichtungen unterstützen

Ausgangsbasis

Unternehmensgründungen aus Hochschulen und Forschungseinrichtungen sind eine besonders **wirksame Form des Technologietransfers** über Köpfe. **Forschungsba sierte Spin-offs** sind das Ergebnis innovativer Forschungsaktivitäten und des Unternehmergeists von Mitgliedern der Hochschulen. Sie sind neben der vorherrschenden Verwertung von Forschungsergebnissen durch Lizenzierung die **schnellste und direkteste Form** des Technologietransfers, die deutlich ausgebaut werden sollte.

Nicht nur in Baden-Württemberg, sondern auch bundesweit liegt die Zahl der Unternehmensgründungen aus Hochschulen und Forschungseinrichtungen auf einem niedrigen Niveau⁷⁰. Im Vergleich mit anderen führenden Wirtschaftsnationen gibt es hier **Nachholbedarf**. Das Angebot an öffentlichen Fördermaßnahmen muss deshalb durch Maßnahmen ergänzt werden, die die **Entwicklung einer lebendigen Gründungskultur** fördern.

Adressatenspezifische **Sensibilisierungs-**, **Qualifizierungs-**- und **Unterstützungsmaßnahmen** sollten nicht nur potenzielle Gründerinnen und Gründer ansprechen. Sie sollten inhaltlich und zeitlich so in das Studium eingebaut werden, dass möglichst **früh im Studium** das **grundsätzliche Interesse** der Studentinnen und Studenten am **Unternehmertum** und an einer **Unternehmensgründung** geweckt wird. Dabei ist darauf zu achten, durch **maßgeschneiderte Maßnahmen** und **Beispiel gebende Rollenmodelle** die Diversität der Studentinnen und Studenten zu berücksichtigen, um mehr Studentinnen und ausländische Studentinnen und Studenten für eine Unternehmensgründung zu gewinnen. Außerdem müssen sich erfolgreiche **Gründungsaktivitäten** für Mitglieder des Lehrkörpers durch Berücksichtigung im **hochschulinternen Anreizsystem** auch materiell lohnen.

Handlungsempfehlungen

Hochschulen

- Erweiterung der **personellen und infrastrukturellen Unterstützung** von Gründungen
- **sichtbare Bereitstellung von Inkubatoren/Gründerzentren** nicht nur für Gründerinnen und Gründer, sondern auch für gründungsinteressierte Studentinnen und Studenten
- Integration der **Entrepreneurship Education** möglichst frühzeitig in das Ingenieurstudium unter **Einbeziehung von Gründerinnen** und **Gründern** sowie **erfahrenen Fachleuten** aus dem Gründerbereich
- Entwicklung von spezifischen Qualifizierungs- und Unterstützungsmaßnahmen für Studentinnen
- Auslobung von Gründungs-/Businessplan-Wettbewerben und Stipendien für die Mitarbeit von Studentinnen und Studenten in Spin-offs
- Berücksichtigung von erfolgreichen Gründungsaktivitäten im hochschulinternen Anreizsystem und in der Öffentlichkeitsarbeit
- Entwicklung einer Gründungskultur an den Hochschulen mit Leistungsanreizen und Best-Practice-Beispielen; Motivation der Studentinnen und Studenten sowie der Mitarbeiterinnen und Mitarbeiter an Hochschulen und Forschungseinrichtungen durch Botschafter des Erfolgs (Der Wunsch nach einer Unternehmensgründung muss zu den fünf am häufigsten genannten Zielen der Studentinnen und Studenten gehören.).

Landesregierung

- Ausbau der laufenden Förderprogramme des Landes, insbesondere des Existenzgründungsprogramms „Junge Innovatoren“
- Durchführung eines gesonderten regelmäßigen Businessplan-Wettbewerbs für forschungsbasierte Spin-offs
- Überprüfung und Anpassung der rechtlichen Rahmenbedingungen bei individueller und institutioneller Beteiligung an forschungsbasierten Unternehmensgründungen
- Förderung der Gründungskultur in Baden-Württemberg durch geeignete Marketingmaßnahmen

4.3.7 Handlungsfeld 5: Qualität ist messbar – Monitoring-System für den Technologietransfer einführen

Ausgangsbasis

Angesichts der quantitativen und qualitativen Unterschiede zwischen den einzelnen Transferformen und des differenzierten Hochschul- und Forschungssystems ist es schwierig, die Aktivitäten und Erfolge einer Einrichtung im Technologietransfer vergleichbar zu messen und zu bewerten. Dennoch kann auf eine Erfolgskontrolle nicht verzichtet werden. Technologietransfer lässt sich nur effektiv gestalten, wenn festgestellt werden kann, ob die getroffenen Maßnahmen die gewünschten Ergebnisse erzielen, welche Maßnahmen die größte Wirkung zeigen und welche Maßnahmen eingesetzt oder ausgebaut werden sollen.

Handlungsempfehlungen

Landesregierung

- Entwicklung eines möglichst effizienten und aussagekräftigen Kennzahlensystems zur kontinuierlichen Bewertung der Aktivitäten und der Erfolge der Hochschulen und Forschungseinrichtungen im Technologietransfer
- landesweite Evaluation der Ingenieurwissenschaften (Hochschulen, außeruniversitäre Forschungseinrichtungen) hinsichtlich eines erfolgreichen Technologietransfers mit Hilfe dieses Kennzahlensystems
- Herausgabe eines Technologietransferberichts in dreijährigem Abstand mit Best-Practice-Beispielen
- Einrichtung eines Technologietransferrats Wirtschaft-Wissenschaft zur Begleitung der Umsetzung der Handlungsempfehlungen der Kommission sowie zur Weiterentwicklung des Technologietransfersystems im Land

4.3.8 Zusammensetzung der Arbeitsgruppe Transfer und Zusammenarbeit

Mitglieder der Arbeitsgruppe Transfer und Zusammenarbeit:

Hr. Dr. rer. pol. Dietrich Birk (Verband Deutscher Maschinen- und Anlagenbau Baden-Württemberg)
Hr. Hagen Buchwald (andrena objects AG)
Hr. Dr.-Ing. Alexander Colsmann (Karlsruher Institut für Technologie)
Hr. Dr. rer. nat. Klaus Dieterich (Robert Bosch GmbH)
Hr. Prof. Dr.-Ing. Herbert Dreher (Duale Hochschule Baden-Württemberg Ravensburg)
Fr. Prof.in Dr. habil. Ursula Eicker (Hochschule für Technik Stuttgart)
Hr. Prof. Dr. phil. nat. Thomas Graf (Universität Stuttgart)
Hr. Prof. Dr. rer. nat. Christian Maercker (Hochschule Esslingen)
Hr. Prof. Dr. rer. pol. Dr. h.c. Ortwin Renn (Universität Stuttgart)
Fr. Prof.in Dr. rer. pol. Dipl.-Ing. Meike Tilebein (Universität Stuttgart; Deutsche Institute für Textil- und Faserforschung Denkendorf)
Hr. Dr.-Ing. E.h. Manfred Wittenstein (Wittenstein AG) (Leiter der Arbeitsgruppe)
Hr. Prof. Dr.-Ing. Peter Woias (Universität Freiburg)
Hr. Dr.-Ing. Andreas Wolf (robomotion GmbH)
Hr. Prof. Dr.-Ing. Roland Zengerle (Universität Freiburg; Hahn-Schickard-Gesellschaft für angewandte Forschung)
Hr. Prof. Dr.-Ing. Thomas Zwick (Karlsruher Institut für Technologie)

Teilnehmerinnen und Teilnehmer des Sounding Boards:

Hr. Prof. Dr. rer. nat. Karl Joachim Ebeling (Universität Ulm)
Hr. Christoph Hahn-Woernle (Viastore)
Hr. Steffen Jäger (OPVengineering)
Hr. Prof. Dr. rer. nat. Ulrich Mescheder (Hochschule Furtwangen)
Hr. Dr.-Ing. Kai-Udo Modrich (Carl Zeiss Automated Inspection)
Hr. Hartmut Rauen (Verband Deutscher Maschinen- und Anlagenbau)
Hr. Dr.-Ing. Klaus-Peter Schnelle (Robert Bosch GmbH)
Hr. Dr.-Ing. Sebastian Schönig (Gehring GmbH)
Fr. Uta Vogel (Hodapp GmbH)
Hr. Dr.-Ing. Detlew Wittmer (Endress+Hauser)
Fr. Prof.in Dr. rer. nat. Margit Zacharias (Universität Freiburg)
5 Zentrale Handlungsempfehlungen

Dieser Abschlussbericht der Expertenkommission Ingenieurwissenschaften@BW2025 richtet sich an Entscheiderinnen und Entscheider in Politik, Verwaltung, Wissenschaft und Wirtschaft.

Die erarbeiteten Handlungsempfehlungen haben das Potenzial, die Ingenieurwissenschaften und mit ihnen die Hochschulen und die außeruniversitären Forschungs einrichtungen in nationalen, europäischen und internationalen Fördersystemen erfolgreich zu positionieren und damit die Leistungs- und Wettbewerbsfähigkeit des Innovations- und Produktionsstandorts Baden-Württemberg durch eine überlegte und mutige Profilbildung und Schwerpunktförderung der Ingenieurwissenschaften zu sichern und weiter zu verbessern.

Im Folgenden werden die übergreifenden Handlungsempfehlungen zusammengefasst, die kurz- bis mittelfristig einen starken Beitrag zur Verwirklichung dieses Ziels leisten können. Die Analyse und die Begründung der einzelnen Maßnahmen finden sich in den Berichtskapiteln der drei Arbeitsgruppen. Auch die weiteren arbeitsgruppen spezifischen Handlungsempfehlungen sind wichtig: Sie konkretisieren und ergänzen die übergreifenden Handlungsempfehlungen in Teilspekten.

5.1 Verstehen wir Innovationsunterstützung als ingenieurwissenschaftliche Mission im gleichgewichtigen Zusammenspiel von Lehre-Forschung-Technologietransfer der Hochschulen

Hochschulen stehen im Zentrum des Innovationssystems. Ingenieurinnen und Ingenieure generieren neues Wissen und transferieren es in gesellschaftlich relevante und wirtschaftlich erfolgreiche Produkte.

Hochschulen

- Verankerung des Technologietransfers im Leitbild und auf strategischer Ebene der Hochschule mit eigener Zuständigkeit in der Hochschulleitung sowie als Schwerpunktthema in der Öffentlichkeitsarbeit
- Berücksichtigung erfolgreicher Transfer-, Verwertungs- und Gründungsaktivitäten (Drittmittel aus der Industrie, Patente, Lizenzen, Ausgründungen) als mit dem Hirsch-Faktor/Publikationsverzeichnis gleichgewichtige Indikatoren bei der Be-
5.2 Schaffen wir strukturelle und infrastrukturelle Rahmenbedingungen

wertung der wissenschaftlichen Leistungsfähigkeit von Wissenschaftlerinnen und Wissenschaftlern besonders in den Ingenieurwissenschaften
- Erweiterung des institutionellen Anreizsystems der Hochschule durch die stärkere Anerkennung erfolgreicher Transfer-, Verwertungs- und Gründungsaktivitäten, z.B. bei Berufen, Aufgabenentlastung und finanziellen Sonderleistungen

Landesregierung
- Schaffung konkurrenzfähiger materieller und rechtlicher Rahmenbedingungen für die Hochschulen im Wettbewerb um die besten Köpfe, insbesondere mit der Wirtschaft
- Überprüfung des rechtlichen und finanziellen Rahmens für eine stärker leistungsorientierte Berücksichtigung erfolgreicher Transfer-, Verwertungs- und Gründungsaktivitäten im persönlichen und institutionellen Bereich

Hochschulen und Landesregierung
- Beibehaltung des Berufungskriteriums „Industrieerfahrung“ an HAW sowie Berücksichtigung dieses Kriteriums bei Berufungen an Universitäten
- Stärkere Berücksichtigung des Technologietransfers als wichtiger Innovationstreiber in der Öffentlichkeits- und Pressearbeit

5.2 Schaffen wir strukturelle und infrastrukturelle Rahmenbedingungen zur Stärkung des Innovationssystems unter Berücksichtigung der differenzierten Hochschul- und Forschungslandschaft Baden-Württembergs

Die Akteure im Innovationssystem müssen sich besser vernetzen, um in der Lehre kreative Köpfe auszubilden, in der Forschung ausgezeichneten Ingenieurinnen und Ingenieuren Freiraum zu geben und den Transfer in die Wirtschaft zu erleichtern.

Hochschulen und teilweise außeruniversitäre Forschungseinrichtungen
- Strukturelle, infrastrukturelle und materielle Absicherung der technikrelevanten Forschung mit kurz-, mittel- und langfristigem Zeithorizont zu etwa gleichen Teilen
- Ausbau des institutionellen Qualitätssicherungssystems für die Entwicklung der Curricula zur Vermittlung und zum Erwerb aktueller und künftiger ingenieurrelevanter fachlicher und sozialer Qualifikationen der Absolventinnen und Absolventen in der Eigenverantwortung der Hochschulen, wobei sich das Verhältnis zwischen grundlagen- und anwendungsbezogenen Spezialisierungen nach dem differenzierten Auftrag und Aufgabenspektrum der Hochschularten richtet
- Beibehaltung der klassischen „Assistenzpromotion“ und der „Promotion in Kooperation mit Unternehmen“ bei strenger Qualitätssicherung und mit Ergänzung durch die strukturierte Promotion (Graduiertenkollegs)
- Diskriminierungsfreie Praxis der Zulassung von Absolventinnen und Absolventen der HAW zur Promotion durch Anpassung der Promotionsordnungen der fachlich zuständigen Fakultäten der Universitäten
- Gleichberechtigte Beteiligung von Professorinnen und Professoren der HAW an Promotionsverfahren, insbesondere durch deren verstärkte Kooptation in die fachlich zuständigen Fakultäten der Universitäten nach wissenschaftlichen Kriterien und in einem transparenten Verfahren
- Ausbau der arbeitsteiligen Zusammenarbeit zwischen den Hochschulen und außeruniversitären Forschungseinrichtungen unter Beteiligung von Unternehmen im
Gesamtspektrum der Schlüsseltechnologien, mit Schwerpunkt aber in den für Baden-Württemberg wichtigen Technologiebereichen
- Überprüfung der traditionellen Governance-Strukturen auf ihre Innovationsfähigkeit und Ausschöpfung des rechtlichen Spielraums zur Entwicklung flexibler fakultäts-/fachbereichs- und auch institutionenübergreifender Strukturen zur verstärkten interdisziplinären Zusammenarbeit zwischen
 + Maschinenbau, Elektrotechnik und Informatik
 + Ingenieur- und Naturwissenschaften
 + Ingenieur-, Geistes- und Sozialwissenschaften,
 um sowohl dem systemischen Ansatz der Ingenieurwissenschaften als auch dem integrativen Innovationsprozess stärker Rechnung zu tragen
- Erprobung neuer Formate transdisziplinärer Zusammenarbeit, um die Erfahrung und das Wissen der Zivilgesellschaft bei der Lösung der großen gesellschaftlichen Herausforderungen zu nutzen
- Bereitstellung teurer technischer Infrastruktur durch instituts- und fakultätsübergreifende Beschaffung und Einrichtung von Technologie-Plattformen mit Zugang auch für Mitarbeiterinnen und Mitarbeiter aus anderen Hochschulen und aus Unternehmen bei transparenten Nutzungs- und Kostenregelungen

Landesregierung
- Beschränkung des Promotionsrechts auf die Universitäten
- Langfristige Förderung der Zusammenarbeit zwischen Wissenschaft und Wirtschaft auf allen Ebenen und in der gesamten Breite der Schlüsseltechnologien
- Verortung der Gestaltung von und der Verantwortung für die ingenieurwissenschaftlichen Curricula an den jeweiligen Hochschulen
- Aufbau technologischer „Hotspots“ in den für Baden-Württemberg wichtigen Technologiebereichen, zum Beispiel Mobilität, Produktionstechnik, Energiesysteme und IKT mit einer auch international wettbewerbsfähigen attraktiven personellen Ausstattung und mit modernster technischer Infrastruktur, um die besten Köpfe und Talente aus Wissenschaft und Wirtschaft aus dem In- und Ausland zu gewinnen
- Förderung einer landesweiten Abstimmung und Organisation technikrelevanter Lehr-, Forschungs- und Transferaktivitäten in den Geistes- und Sozialwissenschaften, zum Beispiel in der Technikfolgenabschätzung, der Techniksoziologie und der Technikphilosophie/Technikethik
- Auflage eines Forschungsförderprogramms zur interdisziplinären Bearbeitung visionärer Fragestellungen mit hohem Forschungsrisiko und besonderem wirtschaftlichem und gesellschaftlichem Potenzial für die Lösung der großen technologischen und gesellschaftlichen Herausforderungen
- Förderung einer innovationsfreundlichen Atmosphäre und Meinungsbildung in der Gesellschaft durch eine offene und reflektierte Diskussion und Kommunikation der Potenziale neuer Technologien
5.3 Erhöhen wir die Anzahl und den Erfolg der Studentinnen und Studenten in Baden-Württemberg durch eine stärkere Berücksichtigung ihrer Heterogenität und Diversität und bilden wir sie zu fachlich kompetenten, sozial verantwortlichen und innovationsstarken Ingenieurinnen und Ingenieuren aus

Nur wer motiviert ist und Erfolg hat, schafft Spitzenleistung. Die Ausbildung von Studentinnen und Studenten muss transparenter, durchlässiger und auf individuelle Voraussetzungen besser abgestimmt werden.

Hochschulen

- Schärfung der Profile der Hochschularten durch eine transparente und differenzierte Gewichtung des Theorie- und Praxisbezugs in der Lehre sowie der Forschungsausrichtung und verstärkte Vermittlung dieser Unterschiede in der Öffentlichkeit
- Flexibilisierung der Bachelor-Studiengänge durch eine zeitliche und inhaltliche Umstrukturierung auf bis zu acht Semester, an die sich konsekutive Master-Studiengänge von drei bis vier Semestern anschließen können
- Sicherung einer breiten Grundausbildung im Bachelor-Studium durch Verzicht auf immer neue spezialisierte Studiengänge
- Verpflichtendes Industriepraktikum vor oder während des Ingenieurstudiums, auch für Studentinnen und Studenten an den Universitäten
- Erweiterung des institutionellen Anreizsystems der Hochschule durch eine stärkere Anerkennung erfolgreicher Lehr- und Lernkonzepte
- Ausbau der Bildungspartnerschaften mit Schulen, um über gemeinsame Projekte Mädchen wie Jungen für das Ingenieurstudium zu begeistern
- Förderung einer gendergerechten Lehre und Ausbau von Mentoring-Programmen für Studentinnen
- Bedarfsgerechter Ausbau der berufsbegleitenden wissenschaftlichen Weiterbildungsangebote
- Stärkerer Einsatz IKT-gestützter Lehr- und Lernformate im Studium und in den Weiterbildungsaktivitäten mit Bereitstellung entsprechender didaktischer Weiterbildungsangebote für Lehrende
- Ausbau der Angebote zur Kinderbetreuung

Landesregierung

- Überprüfung der Lehrpläne für Mathematik und Physik im G8-Bereich und eine deutlich stärkere Verankerung von Informatik und Technik in den Lehrplänen der Schulen
- Sicherung des Ausbaus von Master-Studiengängen in den Ingenieurwissenschaften unter Berücksichtigung des Bedarfs von Wissenschaft und Wirtschaft
- Modernisierung des Kapazitätsrechts durch eine stärkere Berücksichtigung der deutlich gestiegenen Anforderungen an eine heterogenitäts- und diversitätsorientierte Lehre
- Zulassung einer flexiblen, bedarfsgerechten Verschiebung der Kapazitäten zwischen Bachelor- und Master-Studiengängen
- Prüfung des rechtlichen und materiellen Rahmens für den Auf- und Ausbau eines bedarfsgerechten wissenschaftlichen Weiterbildungsangebots der Hochschulen
- Ausbau der Angebote zur Kinderbetreuung
Wirtschaft

- Bereitstellung einer ausreichenden Zahl von Praktikumsplätzen
- Entwicklung interessanter beruflicher Ausbildungsangebote, um einen geregelter Ausstieg aus dem Studium für eine zweite berufliche Chance zu ermöglichen
- Schaffung attraktiver familienfreundlicher Arbeitsbedingungen

Hochschulen, Landesregierung und Wirtschaft

- Regelmäßige abgestimmte Öffentlichkeitsarbeit zum Ingenieurberuf, seiner wirtschaftlichen Bedeutung und gesellschaftlichen Verantwortung

5.4 Bringen wir Hochschulen, außeruniversitäre Forschungseinrichtungen und Unternehmen enger zusammen und kümmern wir uns gezielt um die Innovationsfähigkeit der KMU

Gemeinsam hoch hinaus: Jeder Akteur im Innovationssystem hat seine Stärken. Wer den diese effizient gebündelt, profitiert der Standort. Das gilt insbesondere für KMU.

Hochschulen und teilweise außeruniversitäre Forschungseinrichtungen

- Steigerung der Zahl von Land und Unternehmen gemeinsam finanzierten Professuren (shared professorships) und Verstärkung des befristeten Personalaustauschs mit Unternehmen
- Ausbau der strategischen, langfristigen und institutionellen Zusammenarbeit zwischen Universitäten und Unternehmen (Industry on Campus-Vorhaben und von der Industrie gestiftete Forschungsinstitute) auch unter Einbeziehung von außeruniversitären Forschungseinrichtungen, HAW und KMU
- Bereitstellung teurer technischer Infrastruktur mit angemessener Kostenregelung zur projektorientierten Nutzung insbesondere durch KMU als „Testbeds“ zur Validierung und Kommerzialisierung von Forschungsergebnissen (Transferforschung)

Landesregierung

- Prüfung des rechtlichen Rahmens für eine nachhaltige Finanzierung von Professuren und Instituten an Hochschulen durch Unternehmen, die damit entsprechenden Einfluss auf deren Einrichtung und Weiterentwicklung gewinnen
- Weitere Förderung von Clustern, Netzwerken und Forschungsallianzen bei kontinuierlicher Überprüfung ihrer Effizienz- und Innovationsfähigkeit
- Weitere Förderung von Industry on Campus-Vorhaben mit mindestens gleichem Finanzierungsanteil der Industrie und Verbesserung der für ihren effizienten Betrieb notwendigen rechtlichen Rahmenbedingungen
- Profilierung der HAW als regionale Innovationsmotoren durch eine verstärkte Förderung von FuE-Projekten mit KMU und Finanzierung einer bedarfsgerechten technischen Infrastruktur zur gemeinsamen Nutzung bei angemessener Kostenregelung
- Einrichtung eines Validierungsfonds, um die Kommerzialisierungsrisiken von Forschungsergebnissen (Demonstratoren, Prototypen) zu verringern
- Einführung einer Overhead-Prämie für die Hochschulen für FuE-Projekte mit KMU
- Mehr Mittel für das Förderprogramm „Innovationsgutscheine“ des Landes und Modifizierung der Fördervoraussetzungen, um den differenzierten Innovationsbedarf der KMU gezielter abzudecken
5.5 Gestalten wir das Innovationssystem offen und dynamisch

Wirtschaft

- Stärkere Nutzung der Innovationspotenziale der Hochschulen insbesondere durch KMU durch eine direkte Einbeziehung von Professorinnen und Professoren in die Produktionsystem- und Produktentwicklung
- Nachhaltiges Engagement bei der gemeinsamen Einrichtung von Industry on Campus-Vorhaben
- Steigerung der externen FuE-Ausgaben für Kooperations- und Auftragsforschung mit Hochschulen und Forschungseinrichtungen

5.5 Gestalten wir das Innovationssystem offen und dynamisch, bauen wir eine lebendige Gründerkultur auf und entwickeln wir die Hochschulen zu Gründerschmieden

Hochschulen

- Möglichst frühzeitige Integration der Entrepreneurship Education in das Ingenieurstudium
- Erweiterung der personellen und materiellen Unterstützung für forschungsbasierte Ausgründungen
- Entwicklung von Qualifizierungs- und Unterstützungsmaßnahmen für gründungsinteressierte Studentinnen und Wissenschaftlerinnen
- Sichtbare Bereitstellung von Inkubatoren/Gründerzentren auf dem Campus nicht nur für Gründerinnen und Gründer, sondern auch für Studentinnen und Studenten

Landesregierung

- Weiterführung und Ausbau der Gründungsprogramme des Landes
- Unterstützung beim Auf- und Ausbau regionaler Inkubatoren/Gründerzentren, die eng mit benachbarten Hochschulen und Forschungseinrichtungen zusammenarbeiten
- Überprüfung und Anpassung der rechtlichen Rahmenbedingungen für die individuelle und institutionelle Beteiligung an forschungsorientierten Ausgründungen, um die Bereitschaft der Professorinnen und Professoren zu Ausgründungen zu fördern und ihre Rolle als Initiatoren und Promotoren zu stärken

5.6 Machen wir das Innovationssystem flexibler

Hochschulen und teilweise außeruniversitäre Forschungseinrichtungen

- Kritische Prüfung der administrativen Rahmenbedingungen und Strukturen, um die hohe Zahl administrativer Aufgaben in Forschung, Lehre und Technologietransfer zu verringern, die administrativen Prozesse zu verschlanken und zu beschleunigen, zum Beispiel durch Aufgabendelegation und effiziente IT-gestützte Verfahren
- Überprüfung des Managements bei der Abwicklung von FuE-Projekten mit Unternehmen, um insbesondere bei KMU Transparenz und Planungssicherheit zu verbessern und den Zeit- und administrativen Aufwand zu verringern
- Entwicklung von realistischen Leitlinien für das Patent- und Lizenzmanagement unter Verwendung vorliegender Musterverträge

Landesregierung

- Anpassung der administrativen Rahmenbedingungen mit dem Ziel, die Hochschulen zu entlasten
- Überprüfung der Durchführung von Förderprogrammen im Hinblick auf Transparenz, Dauer und Nutzerfreundlichkeit
- Überprüfung des Auftrags und der Aufgaben der Technologie-Lizenz-Büro GmbH zusammen mit den Hochschulen mit dem Ziel einer landesweit abgestimmten Patentverwertung

5.7 Investieren wir klug in das Innovationssystem

Die Landesregierung muss deshalb die Abschaffung des Kooperationsverbots zwischen Bund und Ländern durch die Novellierung von Art. 91 b GG nutzen und beim Bund darauf drängen, dass er sich möglichst bald in substantiellem Umfang und langfristig an der Grundfinanzierung der Hochschulen beteiligt. Trotz der politischen Situation mit ihren finanziellen Herausforderungen, derer sich die Kommission be- wusst ist, sollte die Landesregierung aber gleichzeitig ein Innovationspaket aus verschiedenen Fördermaßnahmen auflegen, um das große Innovationspotenzial der Ingenieurwissenschaften im Land insbesondere für die Zusammenarbeit mit den KMU in den nächsten Jahren noch stärker zu nutzen und damit die Innovationsfähig-keit des Landes zu steigern.
5.8 Stellen wir uns dem Wettbewerb

Landesregierung

- Nutzung der zusätzlichen Möglichkeiten, die die Novellierung des Artikels 91b des Grundgesetzes bietet, um den heute hohen Anteil projekt- bzw. programmbasierter Finanzierung von Lehre und Forschung zugunsten der Grundfinanzierung umzuschichten
- Unabhängig von Förderprogrammen ist eine verlässliche und ausreichende (Grund-)Finanzierung technikrelevanter Forschung, insbesondere mit langfristigem Zeithorizont, zu gewährleisten
- Zusätzlich zur sofortigen Umsetzung sind 35 Millionen Euro pro Jahr bereitzustellen, um die infrastrukturellen und finanziellen Grundlagen der Forschung insbesondere mit langfristigem Zeithorizont in den Ingenieurwissenschaften zu verbessern:
 + Förderprogramm zur Beschaffung und Modernisierung teurer technischer Infrastruktur
 + Förderprogramm zur interdisziplinären Bearbeitung visionärer Fragestellungen
- Weitere 25 Millionen Euro pro Jahr sind notwendig, um in Abstimmung mit der Wirtschaft die Fördermaßnahmen insbesondere zur Stärkung der Innovationsfähigkeit von KMU und zur Steigerung fürsungsbasierter Gründungsaktivitäten auszubauen:
 + Fördermaßnahmen zur Verbesserung der Innovationsfähigkeit von KMU einschließlich des Ausbaus der Transferforschung an HAW
 + Einrichtung eines Validierungsfonds
 + Ausbau der Gründungsförderung
 + Weitere Beteiligung an der Förderung von „Industry on Campus“-Vorhaben

5.8 Stellen wir uns dem Wettbewerb. Wir brauchen valide und robuste Kennzahlen als Grundlage für ein aussagekräftiges Monitoring der Innovationsfähigkeit und des Innovationsbeitrags der Hochschulen und Forschungseinrichtungen

Wer viel erreicht hat und international vorn bleiben will, muss sich mit den Besten vergleichen und seinen Weg ständig überprüfen. Dazu muss eine solide Datengrundlage geschaffen werden.

Landesregierung

- Einsetzung eines Technologietransferrats aus Vertreterinnen und Vertretern von Wissenschaft, Wirtschaft, Gesellschaft und Politik mit der Aufgabe, die Umsetzung der Handlungsempfehlungen zu begleiten und Impulse für die Weiterentwicklung des Innovationssystems im Land zu geben
- Herausgabe eines Technologietransferberichts in dreijährigem Rhythmus mit Best-Practice-Beispielen
Der vorliegende Bericht der Kommission Ingenieurwissenschaften@BW2025 nennt sich zwar „Abschlussbericht“ (den Abschluss der Beratungen), er definiert aber einen Anfang. Er skizziert den Weg, den wir nun rasch weiter gehen müssen. Es liegt an uns, den Hochschulen und außeruniversitären Forschungseinrichtungen, der Landesregierung und der Wirtschaft, überlegt, mutig und schnell voranzuschreiten. Es kann unterwegs an der einen oder anderen Stelle eine kleine Umleitung oder eine Abkürzung notwendig und sinnvoll sein. Aufgrund der Dynamik des Umfelds kann es Änderungen geben, ein Thema kommt hinzu oder wird verändert umgesetzt. Unser herausforderndes Ziel ist jedoch heute schon klar:

Im Jahr 2025 ist Baden-Württemberg ein hoch wettbewerbsfähiges und internationales Exzellenzzentrum der Ingenieurwissenschaften.

Es gilt, zeitnah die Maßnahmen umzusetzen, mit denen man schon heute beginnen kann. Des Weiteren müssen Umsetzungsgruppen gebildet werden, die die Realisierung der definierten mittel- bis langfristigen Themen vorantreiben. Die Landesregierung ist hier gefordert, mit hoher Priorität Zeichen zu setzen und die innovationsfreundlichen und innovationsfördernden Rahmenbedingungen zu schaffen, damit der beschriebene Weg zum Exzellenzzentrum erfolgreich beschnitten werden kann und somit die Grundlage für das Innovationssystem in Baden-Württemberg weiter gestärkt wird.
Glossar

Artefakt
Gegenstand, der seine Form durch menschliche Einwirkung erhielt (im Text: Bauwerke, Maschinen, Produkte u.v.m.)

Best Practice
(besonders in Wirtschaft und Politik) bestmögliche [bereits erprobte] Methode, Maßnahme o. Ä. zur Durchführung, Umsetzung von etwas

Betreuungsrelation
Die Kennzahl beschreibt das zahlenmäßige Verhältnis der Studentinnen und Studenten zum wissenschaftlichen und künstlerischen Personal in Vollzeitäquivalenten ohne drittmittelfinanziertes Personal

Cluster
Gruppe von Unternehmen, verwandten ökonomischen Akteuren und Institutionen, die in regionaler Nähe zueinander angesiedelt und miteinander vernetzt sind. Ein Cluster beschreibt ein Netzwerk von Akteuren, die in einer Austauschbeziehung entlang der Wertschöpfungskette stehen. Durch eine enge Zusammenarbeit der verschiedenen Unternehmen und Institutionen entstehen für alle Beteiligten Wettbewerbsvorteile

College
(in den USA) Eingangsstufe der Universität

Curriculum, Curricula (pl.)
auf einer Theorie des Lehrens und Lernens aufbauender Lehrplan

Curricularwert
bestimmt den in Deputatstunden gemessenen Aufwand aller beteiligten Lehreinheiten, der für die ordnungsgemäße Ausbildung in dem jeweiligen Studiengang erforderlich ist

Employability
Einsetzbarkeit im Beruf; Fähigkeit, auf dem Arbeitsmarkt zu bestehen

Entrepreneurship
Begriff beinhaltet die Identifikation von Marktchancen, die Entwicklung einer Geschäftsidee sowie deren Umsetzung hin zur Unternehmensgründung. Die Unternehmerin bzw. der Unternehmer (Entrepreneurin bzw. Entrepreneur) besitzt die Fähigkeit, mittels Kombination verschiedener Arten von Wissen, Fähigkeiten, Fertigkeiten und Ressourcen eine Erfindung (Invention) in eine erfolgreiche Innovation umzusetzen. Der Begriff Entrepreneur bezieht sich damit vor allem auf Gründerinnen und Gründer mit innovativen und wachstumsstarken Geschäftsideen

Facility
(technische) Ausstattung, Einrichtung, Infrastruktur eines Unternehmens oder Gebäudes
Hidden Champions

Hochschulen
Universitäten, Hochschulen für Angewandte Wissenschaften (HAW), Duale Hochschule Baden-Württemberg (DHBW)

Hochschulsektor
alle staatlichen und nicht-staatlichen Universitäten, Gesamthochschulen, Pädagogischen Hochschulen, Kunsthochschulen, (Verwaltungs-) Hochschulen für Angewandte Wissenschaften, Duale Hochschulen sowie die Theologischen Hochschulen\(^\text{219}\)

Hub
zentraler Umschlagplatz, Knotenpunkt (besonders des internationalen Luftverkehrs)\(^\text{220}\)

Forschungs- und Entwicklungsintensität
Die FuE-Intensität entspricht den Forschungs- und Entwicklungsausgaben bezogen auf das Bruttoinlandsprodukt\(^\text{221}\) (hier: bezogen auf das BiP von Baden-Württemberg)

Frugale Innovation
Der Begriff „Frugale Innovationen“ steht für intelligente, kreative Lösungen für lokale gesellschaftliche Bedarfe unter starken Ressourcenbeschränkungen\(^\text{222}\)

Innovationsintensität
Der Anteil der Innovationsausgaben am Umsatz von Unternehmen, Branchen oder allen Unternehmen eines Landes beziehungsweise am Bruttoinlandsprodukt eines Landes (Angabe in Prozent)\(^\text{223}\)

Interdisziplinarität
Verfahren der Suche nach Problemlösungen durch Einbeziehung von Erkenntnissen möglichst aller durch ein Problem tangierten Fachdisziplinen\(^\text{224}\)

kooperative Forschung
ist Forschung, in deren Rahmen Forscher unterschiedlicher Disziplinen, Standorte, Organisationen oder Organisationsarten zusammenarbeiten. Die wesentlichen Formen kooperativer Forschung beziehen sich auf die Zusammenarbeit innerhalb derselben Disziplin, die Zusammenarbeit über Disziplingrenzen hinweg sowie die Zusammenarbeit zwischen wissenschaftlichen Einrichtungen und privatwirtschaftlich organisierten Unternehmen. Für unterschiedliche Formen kooperativer Forschung stehen jeweils geeignete Formate zur Verfügung
Lead Market
Lead Markets sind regionale Märkte (in der Regel Länder), die ein bestimmtes Innovationsdesign früher als andere Länder nutzen und über spezifische Eigenschaften (Lead Market Faktoren) verfügen, die die Wahrscheinlichkeit erhöhen, dass in anderen Ländern das gleiche Innovationsdesign ebenfalls breit adoptiert wird.

Living Lab
ist ein offenes Forschungskonzept zur nachhaltigen Produktentwicklung, bei dem der Nutzer in den gesamten Entwicklungsprozess einbezogen wird. Living Labs entwickeln sich meist in einem abgegrenzten Territorium (z.B. Stadt, Region) und nehmen auf regionale und soziale Spezifika Rücksicht. Damit fördern sie regionale Innovationen.

poietisch
bildend, das Schaffen betreffend

Prekarisierung
von Prekarität: Gesamtheit der Arbeitsverhältnisse ohne soziale Absicherung

Privacy-by-Design

Security-by-Design

Service Engineering
beschreibt die systematische Entwicklung neuer Dienstleistungen mithilfe der adäquaten Übernahme von bereits vorhandenen ingenieurwissenschaftlichen Methoden, beispielsweise aus der klassischen Produktentwicklung und dem Systems Engineering. Dabei werden Referenzmodelle für systematische Dienstleistungsprozesse entwickelt und anwendungsbezogen ausgestaltet.

Shared professorship
Zusammenarbeit zwischen Hochschulen und der Industrie durch gemeinsam finanzierte Professuren

Spin-off
Glossar

Staatssektor
Umfasst Einrichtungen der öffentlichen Hand auf Bundes-, Länder- und Gemeindeebene sowie private, überwiegend öffentlich finanzierte Organisationen ohne Erwerbszweck, die in erster Linie Forschungs- und ähnliche Aktivitäten im Hinblick auf öffentliche Aufgaben durchführen.\(^{232}\)

Start-up
Begriff aus dem Gründungsgeschehen für ein junges Unternehmen, das in der Gründungsphase, im Aufbau oder seit Kurzem im Geschäft ist und seine Produkte noch nicht oder nicht in größerem Umfang vermarktet.\(^{233}\)

State University System
Ist ein von einem Bundesstaat der Vereinigten Staaten getragener Verbund staatlicher Universitäten

Systems Engineering
Umfasst die wesentlichen Ingenieurtätigkeiten, die zur Entwicklung komplexer Produkte bzw. Systemlösungen notwendig sind. Um eine Vielzahl von Funktionen erfolgreich zu einem beherrschbaren und kostengünstigen System zu integrieren, müssen unterschiedlichste Anforderungen über den gesamten Systemlebenszyklus hinweg berücksichtigt werden. Dazu gehören Aufgaben wie Systemanalyse (System Analysis), Systemarchitekturentwicklung (System Architecture Design), Systementwicklung (System Design), Anforderungsentwicklung (Requirements Engineering/Requirements Management), Konfigurationsmanagement (Configuration Management), Technologienentwicklung und -management (Technology Management, Obsolescence Management), Verifikation und Validierung (V&V).\(^{234}\)

Tenure-Track
Ein System, in dem zunächst nur befristet eingestellte Nachwuchswissenschaftler/-innen bzw. -wissenschaftler eine Option auf eine Professur an ihrer Universität haben.\(^{235}\)

Time to Market
Unter dem Begriff „time to market“ (TTM) (englisch, etwa: Vorlaufzeit, Produkteinführungszeit) versteht man die Dauer von der Produktentwicklung bis zur Platzierung des Produkts am Markt. In dieser Zeit entstehen für das Produkt Kosten, es erwirtschaftet aber keinen Umsatz

TU9
Die neun führenden Technischen Universitäten in Deutschland: RWTH Aachen, TU Berlin, TU Braunschweig, TU Darmstadt, TU Dresden, Leibniz Universität Hannover, Karlsruher Institut für Technologie, TU München, Universität Stuttgart

Transdisziplinarität
Einbeziehung der Zivilgesellschaft (z.B. Reallabore), über Disziplinen hinaus

Wirtschaftssektor
Umfasst private und staatliche Unternehmen, Institutionen für industrielle Gemeinschaftsforschung und experimentelle Gemeinschaftsentwicklung und private Institutionen ohne Erwerbszweck, die überwiegend von der Wirtschaft finanziert werden bzw. vornehmlich Dienstleistungen für Unternehmen erbringen.\(^{236}\)

Work-Life Balance
Balance zwischen Arbeiten und Leben
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutsches Wort/Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>BIP</td>
<td>Bruttoinlandsprodukt</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Energie</td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung und Forschung</td>
</tr>
<tr>
<td>BW</td>
<td>Baden-Württemberg</td>
</tr>
<tr>
<td>CPS</td>
<td>Cyberphysisches System</td>
</tr>
<tr>
<td>DFG</td>
<td>Deutsche Forschungsgemeinschaft</td>
</tr>
<tr>
<td>DHBW</td>
<td>Duale Hochschule Baden-Württemberg</td>
</tr>
<tr>
<td>DZHW</td>
<td>Deutsches Zentrum für Hochschul- und Wissenschaftsforschung GmbH</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FuE</td>
<td>Forschung und Entwicklung</td>
</tr>
<tr>
<td>HAW</td>
<td>Hochschulen für Angewandte Wissenschaften</td>
</tr>
<tr>
<td>HZB</td>
<td>Hochschulzugangsberechtigung</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnologie</td>
</tr>
<tr>
<td>IP</td>
<td>intellectual property (geistiges Eigentum)</td>
</tr>
<tr>
<td>IT</td>
<td>Informationstechnik</td>
</tr>
<tr>
<td>KIT</td>
<td>Karlsruher Institut für Technologie</td>
</tr>
<tr>
<td>KMU</td>
<td>Kleine und mittlere Unternehmen</td>
</tr>
<tr>
<td>LHG</td>
<td>Landeshochschulgesetz</td>
</tr>
<tr>
<td>MINT</td>
<td>Mathematik, Informatik, Naturwissenschaft und Technik</td>
</tr>
<tr>
<td>MPI</td>
<td>Max-Planck-Institut</td>
</tr>
<tr>
<td>NwT</td>
<td>Naturwissenschaft und Technik</td>
</tr>
<tr>
<td>TLB</td>
<td>Technologie-Lizenz-Büro der Baden-Württembergischen Hochschulen GmbH</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America (Vereinigte Staaten von Amerika)</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure e.V.</td>
</tr>
<tr>
<td>VDMA</td>
<td>Verband Deutscher Maschinen- und Anlagenbau e.V.</td>
</tr>
<tr>
<td>ZEW</td>
<td>Zentrum für Europäische Wirtschaftsforschung GmbH</td>
</tr>
<tr>
<td>ZIM</td>
<td>Zentrales Innovationsprogramm Mittelstand</td>
</tr>
</tbody>
</table>
Quellenverzeichnis

3 Beckmann, J. (1968): „Anleitung zur Technologie, oder zur Kentniß der Handwerke, Fabriken und Manufakturen, vornehmlich derer, die mit Landwirtschaft, Polizey und Cameralwissenschaften in nächster Verbindung stehn“, Göttingen 1777; Reprint Leipzig 1968, § 12, S. 17 (eigene Hervorhebungen)

5 Deutsche Akademie der Technikwissenschaften (Hrsg.) (2013): Technikwissenschaften: Erkennen – Gestalten – Verantworten; acatech IMPULS; Berlin; Springer Verlag, S. 18

6 Kornwachs, K. (2012): Strukturen technologischen Wissens. Analytische Studien zu einer Wissenschaftstheorie der Technik; Berlin; Ernst und Sohn Verlag

7 Erlach, K. (2000): Das Technotop. Die technologische Konstruktion der Wirklichkeit; Berlin; LIT Verlag

9 Institut für Berufsmarktforschung (Hrsg.) (2014): Aktuelle Analysen aus dem Institut für Arbeitsmarkt- und Berufsforschung; IAB-Kurzbericht 9/2014; Nürnberg/Bielefeld; Bertelsmann Verlag GmbH & Co. KG; S. 7; http://doku.iab.de/kurzber/ 2014/kb0914.pdf [letzter Zugriff 25.7.2015]

15 Poplow, M. (2010): Technik im Mittelalter; München; H.C. Beck Verlag; S. 42f

19 Ebd.

20 Ebd.

21 Ebd.

26 Hochschulen für Angewandte Wissenschaften Baden-Württemberg e.V. (2015); https://www.hochschulen-bw.de/home/haw-bw/vorstand.html [letzter Zugriff 22.09.2015]

27 Hetze, P. (2015): Ländercheck kompakt. Lehre und Forschung im föderalen Wettbewerb; Stifterverband für die deutsche Wissenschaft e.V. (Hrsg.); Essen; S. 7

35 Ebd.; S. 238

36 Ebd.; S. 237 / S. 221

37 Ebd.; S. 221

45 Polt W. et al. (2009): Die deutsche Forschungs- und Innovationssystem; Studien zum deutschen Innovationssystem; Nr.11 – 2010; Joanneum Research Forschungsgesellschaft (Wien); Technopolis Group (Amsterdam, Brighton); Zentrum für europäische Wirtschaftsforschung (ZEW) (Hrsg.); S. 129

48 SV Wissenschaftsstatistik (Hrsg.) (2014): Mehr Ideen bitte. Innovationsprozesse im Umbruch, Zeitschrift der Wissenschaftsstatistik im Stifterverband für die Deutsche Wissenschaft; Edition Stifterverband; Essen; S. 6

52 Polt W. et al. (2009): Das deutsche Forschungs- und Innovationssystem; Studien zum deutschen Innovationssystem; Nr.11 – 2010; Joanneum Research Forschungsgesellschaft (Wien); Technopolis Group (Amsterdam, Brighton); Zentrum für europäische Wirtschaftsforschung (ZEW) (Hrsg.); S. 2

53 Ebd.; S. 129

58 United Nations, Department of Economic and Social Affairs/Population Division (2012): World Urbanization Prospects: The 2011 Revision; New York, UN

59 Silverstein, M. J. et al. (2012): The $10 Trillion Prize: Captivating the Newly Affluent in China and India. Boston, MA, HBR.

63 Havas Worldwide (2012): Aging: Moving beyond Youth Culture; Prosumer Report 14; Paris, Havas

64 National Science Board (2014): Science and Engineering Indicators 2014; National Science Foundation; Arlington, NCSES

65 Gransche, B. et al. (Hrsg.) (2014): Wandel von Autonomie und Kontrolle durch neue Mensch-Technik-Interaktionen. Schlussbericht: WAK-MTI. Karlsruhe; Fraunhofer ISI
Quellenverzeichnis

56 Bundesverband Deutscher Stiftungen (Hrsg.) (2014): Zahlen, Daten, Fakten zum deutschen Stiftungswesen; Berlin (Zum Anstieg der Stiftungen und ihrer Förderaktivitäten in Deutschland)

61 Ernst & Young (2011): It’s time for Africa. E & Ys 2011 Africa Attractiveness Survey; O.O.: Ernst & Young South Africa; The Economist (2011): The lion kings? Africa is now one of the world fastest growing regions; in: The Economist; [letzter Zugriff 20.10.2015]

63 Welthandelsorganisation (2013): World Trade Report 2013; Genf, WTO, S.45

71 Ebd.

73 Ebd., S.16

Quellenverzeichnis

85 Ebd.
86 Ebd.
93 PricewaterhouseCoopers (2014): Industrie 4.0 – Chancen und Herausforderungen der vierten industriellen Revolution
99 Ebd.
Quellenverzeichnis

109 Ebd.; S.20

113 Deutsche Forschungsgemeinschaft (2004): Thesen und Empfehlungen zur universitären Ingenieurausbildung; Bonn

114 Stifterverband für die Deutsche Wissenschaft (2013): Charta guter Lehre. Grundsätze und Leitlinien für eine bessere Lehrkultur: POSITIONEN; Bettina Jorzik (Hrsg.)

119 Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission

121 Ebd.

122 Ebd.

125 Wissenschaftsrat (2010): Empfehlung zur Differenzierung der Hochschulen; Drs. 10387-10; Lübeck 12.11.10; Wissenschaftsrat (2010): Empfehlungen zur Rolle der Fachhochschulen im Hochschulsystem; Drs. 10031-10; Berlin 02.07.2010

131 Ebd.

133 Ministerium für Wissenschaft, Forschung und Kunst; Ministerium für Finanzen und Wirtschaft Baden-Württemberg (Hrsg.) (2015): Wie MINT-Projekte gelingen! Qualitätssicherung für gendersensible MINT-Projekte in der Berufs- und Studienorientierung; Stuttgart, S. 7

137 Ebd.

141 Nickel, S. (Hrsg.) (2011): Der Bologna-Prozess aus der Sicht der Hochschulforschung. Analysen und Impulse für die Praxis; CHE gemeinnütziges Centrum für Hochschulentwicklung; Arbeitspapier Nr. 148, Gütersloh

143 Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg, Stuttgart; interne Datenbank [07/2015]

144 Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg, Stuttgart, interne Datenbank [07/2015]

151 Sounding Board der Arbeitsgruppe Forschung am 23.03.2015; mündliche Aussage

152 Deutsche Forschungsgemeinschaft (2015); Abfrage durch Expertenkommission

154 Deutsche Forschungsgemeinschaft (2015): Förderatlas 2015, Kennzahlen zur öffentlich finanzierten Forschung in Deutschland, Bonn

156 Ebd.

159 Gesetzentwurf der Bundesregierung: Entwurf eines Gesetzes zur Änderung des Grundgesetzes (Artikel 91b); http://dip21.bundestag.de/dip21/btd/18/027/1802710.pdf [letzter Zugriff 30.10.2015]

<table>
<thead>
<tr>
<th>Quellenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
</tr>
<tr>
<td>172</td>
</tr>
<tr>
<td>177</td>
</tr>
</tbody>
</table>
| **180** | Egeln, J. et al. (2015): Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen. Die Sicht der Unternehmen. Berichtsteil II. Qualitative Ergebnisse zur Rolle und...
Stellung von Ingenieurinnen und Ingenieuren im Innovationsverhalten von Unternehmen. Gutachten für das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg; Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheim

Stifterverband für die Deutsche Wissenschaft (2013): Hochschulbarometer. Wo Hochschulen mit Unternehmen kooperieren. Lage und Entwicklung der Hochschulen aus der Sicht der Leitungen; Essen; S. 30 ff

Egeln, J. et al. (2012): Existenzgründungsgeschehen in Bayern. Zusammenfassende Würdigung der Ergebnisse; Mannheim; S. 2 ff

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (2015); interne Datenbank

Stifterverband für die Deutsche Wissenschaft (2014): Gründungsradar 2013. Wie Hochschulen Unternehmensgründungen fördern; Essen; Stifterverband für die Deutsche Wissenschaft (2014): Ländercheck. Lehre und Forschung im föderalen Wettbewerb. Die Hochschule als Gründungswerkstatt; Essen

197 Bijedic, T. et al. (2014): Der Einfluss institutioneller Rahmenbedingungen auf die Gründungsneigung von Wissenschaftlern an deutschen Hochschulen; IFM-Materialien Nr. 231; Bonn; S. 51–54

207 Stifterverband für die Deutsche Wissenschaft (2014): Gründungsradar 2013. Wie Hochschulen Unternehmensgründungen fördern; Essen, S. 9

210 Statistisches Bundesamt (2013): Hochschulen auf einen Blick; Wiesbaden; S. 22

211 BMBF – Bundesministerium für Bildung und Forschung (2010): Bundesbericht Forschung und Innovation 2010; Bonn/Berlin

212 Duden online (2015): College; http://www.duden.de/rechtschreibung/College_Schule_England_USA [letzter Zugriff 22.10.2015]

216 BMBF – Bundesministerium für Bildung und Forschung (2010): Bundesbericht Forschung und Innovation 2010; Bonn / Berlin

Quellenverzeichnis

129

225 Zentrum für europäische Wirtschaftsforschung (ZEW) (2010): Lead Markt Deutschland. Zur Position Deutschlands als führender Absatzmarkt für Innovationen; Mannheim; S.16

231 BMBF – Bundesministerium für Bildung und Forschung (2010): Bundesbericht Forschung und Innovation 2010; Bonn/Berlin

233 BMBF – Bundesministerium für Bildung und Forschung (2010): Bundesbericht Forschung und Innovation 2010; Bonn/Berlin

ANHANG
Inhalt

1. Diskussionsvorlage
2. Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen. Berichtsteil I
3. Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen. Berichtsteil II
4. Grundlegende Daten
5. Erläuterungen zu „Ströme der Studentinnen und Studenten in den Ingenieurwissenschaften in Baden-Württemberg”
6. Technologietransfer – Messung und Kennzahlen
1. Diskussionsvorlage

Kommission

Ingenieurwissenschaften@BW2025

- Strategische und strukturelle Weiterentwicklung der Ingenieurwissenschaften in Baden-Württemberg -

25. März 2014

Autor:
Professor Dr.-Ing. Thomas Bauernhansl
1.1 Rahmenbedingungen

1.1.1 Renaissance der industriellen Produktion und der Ingenieurwissenschaften

Die Ingenieurwissenschaften in Deutschland müssen sich auf die veränderten Rahmenbedingungen einstellen. Ohne eine Fokussierung auf ihre Stärken und eine durchdachte Strategie der Zusammenarbeit der verschiedenen Institutionen der Wissenschaft, der Wirtschaft, der Gesellschaft und der Politik wird es nicht gelingen, ihre führende Position im internationalen Wettbewerb zu halten.

1.1.2 Nachhaltigkeit als Ergebnis der 4. Industriellen Revolution

1.1.3 Fachkräftemangel als Wachstumsrisiko Nummer 1

und Studienabbrcher, zu wenig Studentinnen und Studenten aus dem Ausland. Nicht nur in Deutschland wird der Fachkräftemangel das übergreifende Hauptrisiko für Wachstum sein. Ab 2020 wird sich das Problem verschärfen, wenn deutlich mehr Ingenieurinnen und Ingenieure in den Ruhestand gehen als Absolventinnen und Absolventen in den Arbeitsmarkt eintreten.

Der Fachkräftemangel kann durch vielfältige Maßnahmen abgemildert werden. Ein Maßnahmenbündel muss darauf abzielen, die Attraktivität des Studiums für potentielle Studentinnen und Studenten aus dem In- und Ausland zu erhöhen. Die berufsbegleitende Weiterbildung von Ingenieurinnen und Ingenieuren muss zur Selbstverständlichkeit werden.

1.1.4 Gefragte Kompetenzen durch Profilschärfung der Hochschulen

Neben den methodischen und fachwissenschaftlichen Fortschritten muss auch das Verhältnis zwischen Grundlagen und Anwendung sowie zwischen Bachelor und Master fortdifferent werden. Die Durchlässigkeit zwischen den unterschiedlich profilierten Hochschulen (Universitäten, HAW, DHBW) ist weiter zu verbessern.

1.1.5 Zusammenarbeit der Hochschulen mit der Wirtschaft

Die Zusammenarbeit verschiedener Branchen und insbesondere eine noch stärkere Zusammenarbeit zwischen Hochschulen, außeruniversitären Forschungseinrichtungen und Unternehmen ist Voraussetzung, um die Potenziale der Industrie 4.0 zu erschließen. Von der Qualität, der Flexibilität und dem Zeitrahmen des Technologietransfers wird es entscheidend abhängen, ob die Bedingungen der Industrie 4.0 im industriellen Alltag um- und durchgesetzt werden können.

Es gibt bereits zahlreiche Ansätze für die Zusammenarbeit der Hochschulen mit der Wirtschaft: An den Universitäten und HAW wird im gesamten Ingenieurbereich in erheblichem Maße mit Drittmitteln aus der Industrie geforscht; die DHBW ist bereits in ihrer Grundstruktur in die Wirtschaft eingebunden; Industry on Campus-Modelle, die Steinbeis-Stiftung und diverse Vernetzungen und Kooperationen sind teilweise originär baden-württembergische „Erfindungen“. Die Qualität, die Struktur und die Reichweite der Zusammenarbeit sollen analysiert und - wenn sinnvoll - neue Formen der Zusammenarbeit entwickelt werden.

1.1.6 Stärken-Schwächen-Analyse

Die Exzellenzinitiative hat als Bewertungskriterium Maßstäbe angelegt, die stark auf die Grundlagenforschung zugeschnitten sind. Dadurch waren die Ingenieurwissenschaften als anwendungsnahe Wissenschaften im Nachteil. Bei

Ungeachtet der unterschiedlichen Fachkulturen müssen die Gründe für die Schwierigkeiten der Ingenieurwissenschaften in einer nächtlichen Stärken-Schwächen-Analyse, die auch das internationale Umfeld einbezieht, untersucht werden. Auf dieser Grundlage ist dann zu überlegen, ob es notwendig ist, das bestehende Förderinstrumentarium um Formate und Instrumente zu ergänzen, die den Rahmenbedingungen und den Aufgaben der Ingenieurwissenschaften mehr entsprechen als zum Beispiel die der Deutschen Forschungsgemeinschaft (DFG).

1.1.7 Fazit

1.2 Programminhalt

1.2.1 Zentrale Frage

Die wirtschafts-, gesellschafts- und forschungspolitischen sowie technologischen Entwicklungen werfen die Frage auf, ob die Ingenieurwissenschaften in den Hochschulen und außeruniversitären Forschungseinrichtungen fachlich, strukturell, infrastrukturell und ressourcenmäßig so aufgestellt sind, dass sie den künftigen Herausforderungen gewachsen sind.

1.2.2 Übergreifende Zielsetzung

- den spezifischen Arbeitskräftebedarf unserer Wirtschaft quantitativ und qualitativ decken.
- leistungsfähigen Nachwuchs für die Forschung in Unternehmen, Hochschulen und außeruniversitären Forschungseinrichtungen ausbilden.
- in der Zusammenarbeit mit anderen Disziplinen oder mit Unternehmen wichtige Beiträge leisten, um Innovationen auf den Weg zu bringen.

1.2.3 Konkreter Arbeitsauftrag

Es wird eine Kommission aus Vertreterinnen und Vertretern der Wissenschaft und der Wirtschaft eingesetzt, die untersuchen soll, wie in der gesamten Breite der Ingenieurwissenschaften

- der Dynamik des wissenschaftlich-technischen Fortschritts bestmöglich Rechnung getragen werden kann,
- die Hochschulen und die außeruniversitären Forschungseinrichtungen des Landes möglichst erfolgversprechend im nationalen, europäischen und auch internationalen Fördersystem positioniert werden können und
die Leistungs- und Wettbewerbsfähigkeit des Innovations- und Produktionsstandorts Baden-Württemberg im globalen Wettbewerb durch Profilbildung, Struktur- und Schwerpunktförderung der Ingenieurwissenschaften gesichert und weiter verbessert werden kann.

Diese Empfehlungen sollen sich nicht nur auf den Bereich der Forschung beschränken, sondern das gesamte Aufgabenfeld der Hochschulen abdecken. Dazu gehört, die zukünftigen Anforderungen an die Lehre und die Ausbildung / Weiterbildung von Ingenieurwissenschaftlerinnen und Ingenieurwissenschaftlern sowie an die Forschung und den Technologietransfer zu formulieren.

Ebenso wichtig ist es, die Kernleistungen, die Profilierung und die Zusammenarbeit der Institutionen (Universitäten, HAW, DHBW, außeruniversitäre Forschungseinrichtungen, Unternehmen, Verbände, Ministerien) zu untersuchen und weiterzuentwickeln. Dies schließt auch Empfehlungen zu Prozessoptimierungen sowie hierfür notwendigen strukturellen Änderungen ein.

Dabei ist das ganze Fächerspektrum der Ingenieurwissenschaften, einschließlich der interdisziplinären Schnittstellen zu wichtigen Disziplinen (Informatik, Materialwissenschaften, Naturwissenschaften, Wirtschafts- und Sozialwissenschaften), zu berücksichtigen. Die Integration der Disziplinen sollte auch die Technikfolgenabschätzung einschließen.

2. Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen. Berichtsteil I:

Repräsentative Ergebnisse zum Innovationsverhalten von Unternehmen

Gutachten für das Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg (MWK)

Mannheim, April 2015

Diese Untersuchung wurde gefördert vom Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg (MWK).

Das MKW hat auf die Ergebnisse keinen Einfluss genommen, diese liegen allein in der Verantwortung der Autoren.

Autoren:
Jürgen Egeln
Dr. Dirk Crass
2.1 Vorbemerkungen

Mit diesem Berichtsteil legt das Zentrum für Europäische Wirtschaftsforschung (ZEW) den ersten Teil seiner Studie zum Thema „Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen“ vor. In diesem ersten Teil werden Analysen und Auswertungen zum Innovationsverhalten deutscher Unternehmen präsentiert. Auf Basis von Auswertungen des Mannheimer Innovationspanel\(^1\) wird ein Überblick über Merkmale und Strukturen von Innovationsprozessen in den deutschen Unternehmen gegeben. Im Fokus stehen dabei die Branchen, für deren Unternehmen Ingenieurinnen und Ingenieure wichtig sind. Das sind vornehmlich Unternehmen der Branchen des Produzierenden Gewerbes (Maschinenbau, Fahrzeugbau, Elektroindustrie, Chemie-, Pharma- und Kunststoffindustrie), aber auch Unternehmen aus Dienstleistungsbranchen mit Technikbezug (technische und Forschung und Entwicklung [FuE]-Dienstleistungen, EDV und Telekommunikation). Es wird untersucht, inwiefern die hier im Fokus stehenden Unternehmen

- innovationsaktiv sind (Innovationsprojekte bearbeiten, Innovationsaufwendungen tätigen, Höhe der Innovationsaufwendungen bezogen auf den Umsatz),
- Innovatoren sind (Innovationsprojekte erfolgreich abgeschlossen haben),
- unterschiedliche externe Akteursgruppen als Impuls- und Anregungsgeber für die Innovationsaktivitäten der Unternehmen nutzen,
- mit wissenschaftlichen Institutionen zusammenarbeiten (gemeinsame Projekte, Auftragsforschung, Nutzung der wissenschaftlichen Ergebnisse),
- finanzielle Mittel für Innovationsaktivitäten aufwenden und in welcher Höhe sie dies tun (absolute Höhe der Innovationsausgaben, Innovationsausgaben als Anteil des Umsatzes),
- mit ihren Innovationen erfolgreich waren (Umsatzanteil mit neuen Produkten) und,
- inwieweit sie sich Hemmnissen bei ihren Innovationsaktivitäten gegenüber sehen.

2.1.1 Zur Branchenstruktur in Baden-Württemberg

\(^1\) Weitere Informationen zum Mannheimer Innovationspanel finden sich am Ende dieses Berichtsteils.
Abbildung A-1: Umsatzanteil nach Branchen in Baden-Württemberg

Abbildung A-2: Branchenstruktur in Baden-Württemberg im Vergleich zu Deutschland insgesamt

2.2 Innovatoren und innovationsaktive Unternehmen

Der Anteil der Unternehmen, die Produkt- oder Prozessinnovationen eingeführt haben (Innovatorenquote) beläuft sich 2013 auf 37 %. Insgesamt gab es in Deutschland in den hier betrachteten Wirtschaftszweigen mit Unternehmen ab fünf Beschäftigten rund 103.000 Innovatoren.

Innovatoren sind Unternehmen, die innerhalb eines zurückliegenden Dreijahreszeitraums (d.h. für 2013: in den Jahren 2011 bis 2013) zumindest ein Innovationsprojekt erfolgreich abgeschlossen, d.h. zumindest eine Innovation eingeführt haben. Es kommt nicht darauf an, ob ein anderes Unternehmen diese Innovation bereits eingeführt hat. Wesentlich ist die Beurteilung aus Unternehmenssicht. Innovationsaktive Unternehmen sind Unternehmen, die im zurückliegenden Dreijahreszeitraum Innovationsaktivitäten durchgeführt haben, unabhängig davon, ob diese in die Markteinführung neuer Produkte oder die Implementierung neuer Verfahren mündeten. Innovative Unternehmen bezeichnen jene Unternehmen, die im aktuellen Jahr finanzielle Mittel für Innovationsaktivitäten bereitgestellt haben, unabhängig davon, ob diese Aktivitäten zur Einführung von neuen Produkten oder neuen Prozessen geführt haben.

Differenziert nach Branchen wiesen die EDV/Telekommunikation und die Elektroindustrie mit jeweils 70 % die höchste Innovatorenquote auf, gefolgt vom Fahrzeugbau (68 %), dem Maschinenbau (64 %) und der Chemie- und Pharma- und Kunststoffindustrie mit 58 %. Die ebenfalls zu den ingenieurintensiven Branchen zählenden technischen und FuE-Dienstleistungen weisen eine deutlich niedrigere Innovatorenquote von lediglich 32 % auf. Niedrige Innovatorenquoten von unter 30 % berichten die Wasserversorgung und Entsorgung, das Transportgewerbe und der Großhandel.
Der Anteil der Unternehmen, die im Zeitraum 2011 bis 2013 Innovationsaktivitäten durchgeführt haben, ist höher als die Innovatorenquote, da manche Unternehmen zwar Innovationsaktivitäten durchführten, diese aber (noch) nicht in die Markteinführung neuer Produkte oder die Implementierung neuer Verfahren mündeten. In Angriff genommene Projekte wurden hier bis Ende 2013 noch nicht abgeschlossen oder zwischenzeitlich eingestellt. Dies betraf 2013 10,6 % aller Unternehmen. Zählt man diesen Anteil zur Innovatorenquote hinzu, so waren 2013 fast 48 % der Unternehmen in Deutschland “innovationsaktiv”. Sehr hohe Anteile von innovationsaktiven Unternehmen ohne Produkt- oder Prozessinnovationen von rund 15 % weisen die technischen und FuE-Dienstleistungen, die Steinwaren und Metallerzeugung sowie die Metallbearbeitung auf.

Abbildung A-4: Innovationsaktive Unternehmen in ingenieurintensiven Branchen nach Größenklassen

Quelle: Mannheimer Innovationspanel 2013

Der Anteil innovationsaktiver Unternehmen ist in Baden-Württemberg mit 55 % deutlich höher als in Deutschland insgesamt (48 %, Abbildung A-5). Ein Grund dafür liegt in dem höheren Anteil an Unternehmen in der forschungintensiven Industrie, insbesondere im Fahrzeug- und Maschinenbau. So zeigen sich leicht höhere Anteile an innovationsaktiven Unternehmen in der Elektroindustrie, dem Fahrzeugbau und der Chemie-, Pharma- und Kunststoffindustrie. Deutlich höhere Anteile weist der Maschinenbau (86 %) und die technischen und FuE-Dienstleistungen (60 %) auf.

Abbildung A-5: Innovationsaktive Unternehmen im Vergleich von Deutschland und Baden-Württemberg

Quelle: Mannheimer Innovationspanel 2013

Ein im Vergleich zu Deutschland insgesamt niedrigerer Anteil an innovationsaktiven Unternehmen weist von den hier ausgewiesenen ingenieurintensiven Branchen lediglich die EDV und Telekommunikation auf. In allen anderen Bran-
Der höhere Anteil an innovationsaktiven Unternehmen in Baden-Württemberg liegt somit nicht ausschließlich in der Wirtschaftsstruktur begründet, sondern auch in der höheren Innovationsneigung der baden-württembergischen Unternehmen.

Branchengruppen

Ingenieurintensive Branchen

Für den Vergleich von Baden-Württemberg mit Deutschland sind die Ergebnisse für ingenieurintensive Branchen ausgewiesen. Hierzu wurden folgende Branchen definiert: Chemie/ Pharma/ Kunststoff (Wirtschaftszweige 19-22 der WZ 2008), Elektroindustrie (26, 27), Maschinenbau (28), Fahrzeugbau (29, 30), EDV / Telekommunikation (61-63) sowie technische und FuE-Dienstleister (71, 72).

2.2.1 Innovationsquellen

Nicht verwunderlich kommen die meisten Impulse und Ideen für Innovationsaktivitäten aus den Unternehmen oder aus der Unternehmensgruppe selbst. Die Unternehmen kennen ihre Angebote und haben in vielen Fällen einen guten Überblick über Probleme damit und auch über Verbesserungsmöglichkeiten. Von hoher Bedeutung als Ideenquelle für Innovationen waren für 35 % der innovationsaktiven Unternehmen aber auch deren Kunden (Abbildung A-6). Dies zeigt, dass die Unternehmen doch stark auf die Wünsche ihrer Kunden eingehen, zumindest zum Teil eine marktorientierte Innovationsstrategie verfolgen.

Abbildung A-6: Informationsquellen hoher Bedeutung für innovationsaktive Unternehmen in Deutschland

Quelle: Mannheimer Innovationspanel 2013

Eine hohe Bedeutung als Ideenquelle sehen jeweils rund 15 % der innovationsaktiven Unternehmen in Lieferanten und in Messen, Konferenzen und Ausstellungen sowie in der öffentlichen Forschung. Auch die Impulse, die von Wettbewerbern ausgehen sind noch für rund 13 % der Unternehmen von hoher Bedeutung.

Abbildung A-7: Hohe Bedeutung der öffentlichen Forschung als Ideenquelle für Innovationen

Quelle: Mannheimer Innovationspanel 2013

Bedeutung von Innovationsquellen

In der Innovationserhebung 2013 wurde die Bedeutung von Innovationsquellen mittels folgender Frage erhoben: „Welche Bedeutung hatten die folgenden Informationsquellen zur Ideenlieferung für neue oder zur Umsetzung laufender Innovationsprojekte in Ihrem Unternehmen in den Jahren 2010 bis 2012?“ Die Unternehmen gaben an, ob sie die jeweilige Informationsquelle nutzten und ob die Bedeutung der Informationsquelle gering, mittel oder hoch war.

2.2.2 Innovationskooperationen

Abbildung A-8: Innovationskooperationen mit anderen Unternehmen oder Einrichtungen

Quelle: Mannheimer Innovationspanel 2013

Abbildung A-9: Innovationskooperationen mit der Wissenschaft, Lieferanten und Kunden

Quelle: Mannheimer Innovationspanel 2013

Die Angaben erfolgen auf Unternehmensebene und nicht für das einzelne Innovationsprojekt. Ein Unternehmen kann also in unterschiedlichen Projekten mit teils mehreren Partnern kooperieren. Weitere Kooperationspartner sind Lieferanten (9 %), Kunden (8 %), Beratungsunternehmen und Ingenieurbüros (8 %), Unternehmen der eigenen Unternehmensgruppe (5 %) und Wettbewerber oder andere Unternehmen aus der Branche (4 %).

Abbildung A-9 zeigt ein detaillierteres Bild der Innovationskooperationen mit wissenschaftlichen Einrichtungen, Lieferanten und Kunden für die ingenieurintensiven Branchen. Die innovationsaktiven Unternehmen in diesen Branchen kooperieren wesentlich häufiger mit anderen Unternehmen und Einrichtungen (etwa 30 % bis 40 % der Unternehmen) als die Unternehmen insgesamt und auch Kooperationen mit Lieferanten und Kunden und insbesondere mit wissenschaftlichen Einrichtungen kommen deutlich häufiger vor. Am häufigsten kooperieren Unternehmen aus der Chemie-, Pharma- und Kunststoffindustrie mit Kunden (14 %), gefolgt von der Elektroindustrie (12 %), dem Fahrzeugbau und den technischen und FuE-Dienstleistungen (jeweils 11 %). Dagegen ist die Kooperation mit Lieferanten am weitesten in den technischen und FuE-Dienstleistungen verbreitet (19 %), gefolgt vom Maschinenbau (16 %) und der Chemie-, Pharma- und Kunststoffindustrie (15 %).

Im Rahmen von Innovationsprojekten kooperieren Unternehmen am häufigsten mit wissenschaftlichen Einrichtungen. Unternehmen in den ingenieurintensiven Branchen gehen deutlich häufiger Kooperationen ein. Der Anteil der
kooperierenden Unternehmen liegt mit 23 % bis 27 % in etwa doppelt so hoch wie im Durchschnitt aller innovationsaktiver Unternehmen.

2.2.3 Höhe der Innovationsausgaben

Abbildung A-10: Innovationsausgaben (in Mrd. Euro)

![Innovationsausgaben](image)

Quelle: Mannheimer Innovationspanel 2013

Abbildung A-11: Anteil der Innovationsausgaben in den Branchengruppen an den gesamten Innovationsausgaben im Vergleich zwischen Baden-Württemberg und Deutschland insgesamt

Quelle: Mannheimer Innovationspanel 2013

2.3 Innovationsintensität

Die Innovationsausgaben setzen sich zu 52,8 % aus Ausgaben für FuE, zu 33 % aus Investitionen für Innovationen und zu 14,2 % aus Ausgaben für externes Wissen zusammen. Der Anteil der FuE-Ausgaben an den Innovationsausgaben liegt in den ingenieurintensiven Branchen spürbar höher. So haben die FuE-Ausgaben an den Innovationsausgaben in der Elektroindustrie einen Anteil von 68 %, gefolgt von den technischen und FuE-Dienstleistungen, der Chemie-, Pharma- und Kunststoffindustrie (jeweils 66 %). Im Jahr 2013 wurden 16,4 % der FuE-Ausgaben an Dritte vergeben. Den höchsten Anteil externer FuE-Ausgaben weist mit 28 % die Nahrungsmittel- und Tabakindustrie auf, gefolgt vom Fahrzeugbau und der Energie/Entsorgung mit jeweils 22 %. Von den ingenieurintensiven Branchen folgen die Chemie-, Pharma- und Kunststoffindustrie (17 %), die Elektroindustrie und der Maschinenbau (jeweils 12 %), EDV/Telekommunikation (10 %) sowie die technischen und FuE-Dienstleistungen (9 %). Der Anteil der Investitionen für Innovationen an den gesamten Innovationsausgaben ist in den ingenieurintensiven Branchen geringer als im Durchschnitt aller Branchen. Unter den ingenieurintensiven Branchen weist die EDV/Telekommunikation mit 38 % den höchsten Anteil auf. Der Anteil an Ausgaben für externes Wissen liegt in den ingenieurintensiven Branchen zwischen 11 % und 17 %. Lediglich die technischen und FuE-Dienstleistungen verwenden mit 4 % einen deutlichen niedrigeren Anteil ihrer Innovationsausgaben für externes Wissen.
Abbildung A-12: Innovationsintensität 2013 nach Branchengruppen

Anhang

Quelle: Mannheimer Innovationspanel.
(Anmerkungen: Innovationsausgaben in Prozent des Umsatzes. Werte vorläufig.)

In Baden-Württemberg übersteigt der Anteil der Innovationsausgaben am Umsatz mit 4,84 % deutlich die Innovationsintensität in Deutschland mit 2,79 % (Abbildung A-13). Dies geht zu einem großen Teil auf den Fahrzeugbau zurück, der in Baden-Württemberg ein deutlich stärkeres Gewicht hat und mit 13,1 % eine nochmals spürbar höhere Innovationsintensität aufweist, als in Deutschland insgesamt (10,7 %).

Abbildung A-13: Innovationsintensität in Baden-Württemberg im Vergleich zu Deutschland insgesamt

Quelle: Mannheimer Innovationspanel 2013

Abbildung A-13 zeigt auch die deutlich höhere Innovationsintensität in der EDV und Telekommunikation (9,8 %) und im Maschinenbau (7,9 %). Lediglich die Elektroindustrie weist mit 7,5 % in Baden-Württemberg eine im Vergleich zu Deutschland insgesamt spürbar niedrigere Innovationsintensität auf.
2.4 Umsatz mit Produktinnovationen

Abbildung A-14: Umsatzanteil von Produktinnovationen 2013 nach Branchengruppen

Quelle: Mannheimer Innovationspanel 2013

Der Umsatz mit Marktneuheiten betrug 136 Mrd. Euro, was einem Anteil am Gesamtumsatz von 2,6 % entspricht. Der Fahrzeugbau erzielte mit Marktneuheiten einen Umsatzanteil von 9,4 %, gefolgt vom Maschinenbau (5,8 %), der Elektroindustrie (5,4 %) und der EDV und Telekommunikation (5,2 %). In der Chemie-, Pharma- und Kunststoffindustrie trugen Marktneuheiten 2,8 % zum Umsatz bei und in den technischen und FuE-Dienstleistungen lediglich 1,7 %.

Die Unternehmen in Baden-Württemberg erzielen mit 17,1 % einen deutlich höheren Anteil ihres Umsatzes mit Produktinnovation als in Deutschland insgesamt (12,9 %). Dabei liegt der Anteil mit Produktinnovationen lediglich im Maschinenbau über dem Durchschnitt in Deutschland (Abbildung A-15). In den übrigen innovations- und ingenieurintensiven Branchen, inklusive dem Fahrzeugbau, liegt der Umsatzanteil mit Produktinnovation unterhalb von dem in Deutschland insgesamt. Der höhere Umsatzanteil mit Produktinnovationen ist somit fast ausschließlich auf die große Bedeutung des Fahrzeugbaus in Baden-Württemberg zurückzuführen.
Abbildung A-15: Umsatzanteil von Produktinnovationen in Baden-Württemberg im Vergleich zu Deutschland insgesamt

Quelle: Mannheimer Innovationspanel 2013

2.5 Behinderung von Innovationsaktivitäten

Abbildung A-16: Behinderung von Innovationsaktivitäten

Quelle: Mannheimer Innovationspanel 2011

Rund 28 % der innovationsaktiven Unternehmen gaben an, aus mangelnder interner oder externer Finanzierung (mindestens) ein Innovationsprojekt nicht begonnen zu haben. Einen weiteren wichtigen Grund, Innovationsprojekte nicht zu beginnen, stellten unternehmensinterne Probleme und Widerstände dar (15 %). Es folgen der fehlende Zugang zu Schutzrechten (12 %), die Marktbeherrschung durch etablierte Unternehmen und fehlende Marktinformationen (jeweils 11 %). Erst mit dem Mangel an Fachpersonal, der bei 8 % der innovationsaktiven Unternehmen dazu führt, Innovationsprojekte nicht zu beginnen, gäbe es von staatlicher Seite mit Blick auf die Ingenieurausbildung an Hochschulen wieder Handlungsansätze.

Begonnene Innovationsprojekte wurden bei 7 % der innovationsaktiven Unternehmen aufgrund fehlender Finanzierung wieder abgebrochen. Es folgen mit 6 % interne Probleme und Widerstände. Die übrigen Gründe sorgten bei einem bis vier Prozent der innovationsaktiven Unternehmen zum Abbruch von mindestens einem Innovationsprojekt.
Der Mangel an Fachpersonal hat besondere Relevanz in der Elektroindustrie. Hier geben 14 % der innovationsaktiven Unternehmen an, Innovationsprojekte aufgrund fehlenden Fachpersonals nicht begonnen zu haben. Abgebrochen werden Innovationsprojekte in der Elektroindustrie deshalb allerdings deutlich seltener (3 %). In den übrigen ingenieurintensiven Branchen wurden Innovationsprojekte in 7 bis 8 % der innovationsaktiven Unternehmen aufgrund fehlenden Fachpersonals nicht begonnen. Die höchste Quote an abgebrochenen Innovationsprojekten aufgrund fehlenden Fachpersonals weist mit 7 % die Chemie- und Pharmaindustrie auf, gefolgt vom Maschinenbau mit 5 %.
Anhang

Mannheimer Innovationspanel

Im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) erhebt das ZEW seit 1993 in Zusammenarbeit mit dem Institut für angewandte Sozialwissenschaft (infas) sowie dem Fraunhofer-Institut für System- und Innovationsforschung (ISI) Informationen zum Innovationsverhalten der deutschen Wirtschaft. Die jährlich durchgeführte Erhebung zielt auf alle Unternehmen in Deutschland mit mindestens fünf Beschäftigten, die ihren wirtschaftlichen Schwerpunkt in der Industrie, in den wissensintensiven Dienstleistungen oder in den sonstigen Dienstleistungen haben.

Die zugrunde gelegten Definitionen entsprechen denen von Eurostat und der OECD, die im sogenannten Oslo-Manual festgelegt sind.
3. Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen. Berichtsteil II:

Qualitative Ergebnisse zur Rolle und Stellung von Ingenieurinnen und Ingenieuren im Innovationsverhalten von Unternehmen

Gutachten für das Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg (MWK)

Mannheim, Mai 2015

Diese Untersuchung wurde gefördert vom Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg (MWK).
Das MKW hat auf die Ergebnisse keinen Einfluss genommen, diese liegen allein in der Verantwortung der Autoren.

Autoren:
Jürgen Egeln
Dr. Dirk Crass
3.1 Vorbemerkungen

Mit der Studie „Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen“ möchte das ZEW einen Beitrag dazu leisten, eben diese Unternehmenssicht in die Kommissionsarbeit einzubeziehen.

In den Kapiteln 3.2 und 3.3 dieses Berichtsteils werden die Aufgabenstellung und das methodische Vorgehen dargelegt. Die Kapitel 3.3.1 bis 3.7 präsentieren die Befunde und Ergebnisse. In Kapitel 3.8 werden die Ergebnisse zusammengefasst und im Zusammenhang dargestellt.

3.2 Aufgabenstellung

Der Diskussionsprozess zur Erarbeitung der Fragestellungen mündete schließlich in der Erstellung eines Interviewleitfadens für die qualitative Erhebung (vgl. den vollständigen Text des Leitfadens im Anhang in Kapitel 10), der Fragen zu folgenden Themen beinhaltet:

- Innovationsverhalten und Organisation der Innovationsprozesse im Unternehmen
- Motivation der Mitarbeiterinnen und Mitarbeiter für Innovationen und Widerstände gegen Innovationen
- Kooperationen mit Unternehmen und wissenschaftlichen Einrichtungen sowie die Arbeitsteilung zwischen Kooperationspartnern bei Innovationsprojekten
- Ingenieurinnen und Ingenieure im Unternehmen:
 - Die Einsatzbereiche der Ingenieurinnen und Ingenieure sowie ihre Funktionen und Rollen im Unternehmen
 - Die bisherige und zukünftig gewünschte Qualifikation der Ingenieurinnen und Ingenieure sowie Akquisition
 - Bedarf und Verfügbarkeit

Auf Basis der qualitativen Befragung bei ausgewählten Unternehmen aus Branchen, für die Ingenieurinnen und Ingenieure eine wichtige Rolle spielen, soll abgeschätzt werden, welche Bedeutung die hier genannten Themen für die Unternehmen haben und wie sie damit umgehen. Besonders wichtig ist dabei, wie die Interviewten die Bedeutung von Ingenieurinnen und Ingenieuren für ihr Unternehmen einschätzen und ob, und gegebenenfalls welche, Probleme sie erwarten.

3.3 Vorgehen und Methode

3.3.1 Auswahl der Bruttostichprobe

Die Bruttostichprobe wurde aus dem Mannheimer Unternehmenspanel gewonnen, das mit Informationen über die direkte Projektförderung des Bundes ergänzt wurde. Aus dieser Datenbank geht der Name der Unternehmen nebst Anschrift und Branchenverordnung hervor. Die Namen der Geschäftsführerinnen und Geschäftsführer sowie weitere Kontaktinformationen stammen aus für das ZEW zugänglichen Informationsquellen (Mannheimer Unternehmenspanel, Internet).

Die Befragung wurde auf Unternehmen beschränkt, die ihren Sitz in Baden-Württemberg haben und die den ingenieurintensiven Branchen zuzurechnen sind. Die ingenieurintensiven Branchen umfassen die Elektroindustrie, den Maschinen- und Anlagenbau, den Fahrzeugbau, die EDV- und Softwarebranche sowie die technischen und FuE-Dienstleistungen. Die Bruttostichprobe bestand zu zwei Dritteln aus innovationsintensiven Unternehmen, die über die Informationen zur direkten Projektförderung identifiziert wurden.

3.3.2 Feldverlauf

Die qualitative Befragung wurde von Mitarbeiterinnen und Mitarbeitern des ZEW in der Feldzeit vom 15.12.2014 bis zum 20.05.2015 durchgeführt.

Pretest

² In der öffentlich zugänglichen Datenbank des Bundesministeriums für Bildung und Forschung (BMBF) werden Daten zur Projektförderung dokumentiert.

³ Der mit dem Auftraggeber abgestimmte finale Interviewleitfaden ist im Anhang zu diesem Bericht enthalten.
Befragung

In fünf Tranchen wurden insgesamt 410 Unternehmen zunächst angeschrieben und dann telefonisch kontaktiert. Die Geschäftsführerinnen und Geschäftsführer erhielten ein von Frau Ministerin Theresia Bauer unterzeichnetes Empfehlungsschreiben, das die Arbeit der Kommission „Ingenieurwissenschaften@BW2025“ erläuterte und um die Teilnahme an der qualitativen Erhebung warb. Bei der telefonischen Kontaktaufnahme konnte auf dieses Schreiben Bezug genommen werden, was die Seriosität der Interviewanfrage unterstrich. Dies war hilfreich und in einigen Fällen der entscheidende Türöffner, da Unternehmen zahlreiche Interviewanfragen bekamen und diese meist abblocken.

3.3.3 Nettostichprobe

Die insgesamt 60 interviewten Unternehmen lassen sich nach den fünf ingenieurintensiven Branchen und der Unternehmensgröße unterscheiden. Tabelle 1 zeigt, dass die meisten Unternehmen der Elektroindustrie zuzuordnen sind, wobei hier mit 50 % auch der höchste Anteil an kleinen Unternehmen (bis zu 50 Beschäftigte) befragt wurde. Die Zahl der mittleren und großen Unternehmen bewegt sich jeweils zwischen fünf und neun.

<table>
<thead>
<tr>
<th>Tabelle A-1: Nettostichprobe nach Branchen und Größenklasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kleine Unternehmen (<50 Beschäftigte)</td>
</tr>
<tr>
<td>Elektroindustrie</td>
</tr>
<tr>
<td>Maschinen- und Anlagenbau</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
</tr>
<tr>
<td>EDV/Software</td>
</tr>
<tr>
<td>Technische/FuE-Dienstleistungen</td>
</tr>
<tr>
<td>Sonstige</td>
</tr>
<tr>
<td>Unternehmen insgesamt</td>
</tr>
</tbody>
</table>

3.4 Innovationen und Organisation von Innovationsprozessen

3.4.1 Innovationen

Durchaus im Sinne der getroffenen Vorauswahl sind die Unternehmen, die im Rahmen der qualitativen Erhebung interviewt wurden, sehr innovationsaktiv und damit auch vielfach erfolgreich. Bis auf vier Unternehmen haben alle in den letzten drei Jahren Innovationsprojekte erfolgreich abgeschlossen, sind somit nach der in der Innovationsökonomie gebräuchlichen Terminologie Innovatoren (vgl. zur Definition Egeln/Crass, 2015, Kapitel 2.2). Die Innovations-

Dabei ist der Innovationsgrad, den die Unternehmen als für sie typisch angeben, durchaus anspruchsvoll. Immerhin 40 Prozent der interviewten Unternehmen sehen radikale Innovationen, somit vollständig neue Produkte oder Verfahren, als für sie typisch an. Ein Drittel der Unternehmen sieht in der Verbesserung der bereits angebotenen Produkte die für sie typische Innovation und für rund ein Viertel der interviewten Unternehmen ist die Verbesserung ihrer Produktionsprozesse ein typisches Ziel der Innovationsanstrengungen.

3.4.2 Von der Produktidee zur Vermarktung

Die Ansätze und Strategien, mit denen die interviewten Unternehmen ihre Innovationsideen zu marktgängigen Produkten entwickeln, sind sehr unterschiedlich. Zum einen orientieren sich die Unternehmen stark an ihren Kunden, zum anderen sind es auch Technologieentwicklungen, die von den Unternehmen aufgegriffen werden und zu neuen Angeboten auf dem Markt führen. Die Wahl der Unternehmen für eine bestimmte Strategie oder für die Kombination unterschiedlicher Vorgehensweisen, hängt ab von der Struktur des Marktes auf dem sie aktiv sind, aber auch von der Art der Innovation, die auf den Markt gebracht werden soll.

Unternehmen, deren Produkte auf die Bedürfnisse individueller Kunden zugeschnitten sind, sind hinsichtlich ihrer Vermarktungsstrategien oft stark kundenorientiert. Typischerweise ist dies im Maschinen- und Anlagenbau der Fall.

#37: „Wir arbeiten kundengetrieben, meist wenn ein Kunde direkt auf uns zukommt mit einem zu lösenden Problem“.

#39: „Stark vom Kunden getrieben. Wir achten auf die Rückmeldung der Bestandskunden um zu sehen, was für neue Module in deren Software am Markt attraktiv sein könnte.“

#29 „Wir arbeiten mit Marktführern (Pilotkundenkonzept), die einen großen und schnellen Marktzugang haben, und entwickeln dann mit den Kunden Produkte, von denen wir dann wissen, dass es schon einen Abnehmer gibt.“

Neben der Orientierung an den (individuellen) eigenen Kunden ist für zahlreiche Unternehmen die Orientierung am Markt insgesamt die Basis für ihre Vermarktungsstrategien für neue Produkte. Etwa ein Drittel der interviewten Unternehmen gibt dies an. Dabei basieren die Impulse für die Entwicklung der Produktinnovationen aus Markterhebungen oder Umfragen auf dem für die Unternehmen relevanten Markt. Die Erkenntnisse daraus führen zu Innovationsaktivitäten in den Unternehmen.

#445: „Unser Produktmanagement analysiert den Markt und definiert daraus Anforderungen an Produkte (Las-thenhefte), diese werden von der Technik in Pflichtenhefte weiterentwickelt.“

4 Um die Erkenntnisse aus der Erhebung zu stützen, wird gelegentlich aus den Unternehmensinterviews zitiert. Dabei werden Zitate gewählt, die als Beispielhaft für eine Reihe von Interviews gelten können.

#P2: „Die kontinuierlichen Innovationen sind fast ausschließlich kundengetrieben, die diskontinuierlichen fast ausschließlich technologisch getrieben. Die diskontinuierlichen Innovationen sind nicht vorhersehbar, da macht es keinen Sinn, den Kunden zu fragen“.

3.4.3 Wissensmanagement

Es gibt unterschiedliche Möglichkeiten, auf welche Weise Unternehmen die Innovationsprozesse oder, weiter betrachtet, die Entstehung neuen Wissens betriebsintern organisieren bzw. managen. Hier interessiert die Frage, inwieweit Unternehmen diese Prozesse strukturiert organisiert haben oder ob diese eher stochastisch in den Unternehmen ablaufen.

Rund die Hälfte der im Rahmen dieser Studie interviewten Unternehmen hat ein strukturiertes Wissensmanagement und wiederum die Hälfte davon auch in Form einer eigenen Abteilung für FuE. Es kann nicht verwundern, dass es ganz wesentlich von der Größe der Unternehmen abhängt, ob diese ein strukturiertes Wissensmanagement haben.

Je größer sie sind, desto größer ist die Wahrscheinlichkeit für eine derartige Organisationseinheit. So geben viele interviewten Unternehmen an, dass sie „zu klein“ für ein strukturiertes Wissensmanagement seien. Vom kleinen Unternehmen gibt nur eines von fünf an, ein strukturiertes Wissensmanagement zu haben. Von den großen Unternehmen sind es annähernd alle. Allerdings gaben mehrere forschungsintensive kleine Unternehmen an, zwar keine FuE-Abteilung zu haben, allerdings im Grunde als Unternehmen insgesamt eine FuE-Abteilung zu sein.

3.4.4 Für die Unternehmen bedeutende Technologien

Was die Unternehmen als für sie bedeutende Technologie ansehen, ist sehr stark von der Branche abhängig, der das jeweilige Unternehmen zuzuordnen ist. Die Nennungen bilden einen Querschnitt der von den interviewten Unternehmen verwendeten Technologien (Automatisierungstechnik, Sensorik, Lade- und Batterietechnik, IT).

Eindeutig benannt wird aber die Erwartung, dass IT und insbesondere die Internettechnik im weiteren Sinne in der Bedeutung stark zunehmen werden.

#P1: 18:30 „Marktabhebende Produkteigenschaft kommt von der Software; Ingenieurinnen und Ingenieure werden nicht weniger wichtig, aber der Anspruch an die Software wird steigen“

Hierbei erwarten die Unternehmen auch Änderungen für sich selbst, die sie im Zusammenhang mit der unter Industrie 4.0 geführten Entwicklungsdebatte sehen.

#P2: „alle unsere Produkte müssen Teil des „Internets of Things“ werden“

3.5 Mitarbeiterinnen und Mitarbeiter im Innovationsprozess

Innovationsaktivitäten von Unternehmen sind sehr „arbeitsintensiv“. Für die Entwicklung neuer Produkte oder Verfahren sind natürlich Investitionen in neue Anlagen, in Labortechnik oder auch in neue Gebäude notwendig. Ganz entscheidend sind aber die Leistungen der am Innovationsprozess beteiligten Menschen, von Mitarbeiterinnen und Mitarbeitern der Unternehmen. Sie identifizieren aus ihren Wahrnehmungen neue Chancen, sie greifen Impulse auf
und setzen sie in neue Ideen für Produkte und Verfahren um, sie erarbeiten neues Wissen und entwickeln die ange-
dachten Neuerungen und sie identifizieren den möglichen Markt für diese Innovationen.

3.5.1 Motivation der Mitarbeiterinnen und Mitarbeiter

Gerade für Unternehmen, die stark innovationsorientiert sind, wie es für die im Rahmen dieser Studie interviewten
Unternehmen der Fall ist, stellt sich die Frage, wie sie die Motivation ihrer Mitarbeiterinnen und Mitarbeiter für Inno-
vationen hoch halten, ob dies Anreize erfordert oder ob die Mitarbeiterinnen und Mitarbeiter gleichsam intrinsisch
motiviert für Innovationen engagiert sind.

Mehr als die Hälfte der befragten Unternehmen sieht die Mitarbeit an Innovationsprojekten als „Teil des Jobs der
Mitarbeiterinnen und Mitarbeiter“ an. Die interviewten Unternehmen die der Branche Software/EDV zuzurechnen
sind, geben alle an, dass Innovationsaktivitäten zum Job ihrer Mitarbeiterinnen und Mitarbeiter gehören. Die Unter-
nehmen mit dieser Einschätzung gehen allesamt davon aus, dass ihre Mitarbeiterinnen und Mitarbeiter dies auch so
sehen und dass deswegen konkrete Maßnahmen zur Motivierung für Innovationsaktivitäten nicht nötig seien.

#85: „Wenn man Anreize braucht, hat man eigentlich schon verloren. Wertvollstes Gut, das man Mitarbeiterinnen
und Mitarbeitern bieten kann ist Handlungsspielraum, das ist wichtiger als ein Anreizsystem“

#445: „Überhaupt nicht. Innovation ist die Verwirklichung der Ingenieurin bzw. des Ingenieurs Grundmotivation!“

Gleichwohl hat rund ein Drittel der interviewten Unternehmen Systeme mit konkreten Anreizen zur Stimulierung des
Innovationsengagements der Mitarbeiterinnen und Mitarbeiter implementiert. Die dabei gewählte Palette an Anrei-
zen ist breit. So kommen Prämien für Innovationsideen und -anregungen vor, Projekte werden nach Anregungen
durch Mitarbeiterinnen und Mitarbeiter aufgegriffen und die Impulsgeber benannt oder besonders engagierte Mitar-
beiterinnen und Mitarbeiter haben die Möglichkeit an speziellen Weiterbildungskursen teilzunehmen. Solche, auf das
Innovationsengagement der Mitarbeiterinnen und Mitarbeiter zielende, Anreizsysteme wurden besonders häufig von
den interviewten Unternehmen aus der Branche Maschinen- und Anlagenbau genannt. Aber auch die Unternehmen
mit Anreizen betonen die Wichtigkeit der intrinsischen Motivation ihrer Mitarbeiterinnen und Mitarbeiter.

#34: „Versuchen unsere Mitarbeiterinnen und Mitarbeiter durch Mitarbeit an der Neugestaltung der Maschinen
zu begeistern. Haben auch ein Prämien-System (finanzielle Anreize), wobei alle was von einer erfolgrei-
chen Innovation haben."

3.5.2 Reaktion auf interne Widerstände gegen Innovationen

Rund die Hälfte der interviewten Unternehmen nimmt keine Widerstände der Mitarbeiterinnen und Mitarbeiter gegen
Innovationen oder die Durchführung von Innovationsprojekten wahr. Diese Unternehmen setzen sich mit diesem
Thema auch nicht auseinander.

Für die andere Hälfte der Unternehmen sind interne Widerstände gegen Innovationsprojekte durchaus ein Thema.
Dabei wurden im Grundsatz zwei Kategorien von „Widerständen“ benannt. Zum einen Widerstände von den Mitarbei-
terinnen und Mitarbeitern, die durch organisatorische oder inhaltliche Veränderungen Nachteile für sich befürchten.
Um dem zu begegnen setzen die Unternehmen vornehmlich auf Kommunikation und Vermittlung der Innovations-
motive um die Mitarbeiterinnen und Mitarbeiter dafür zu gewinnen.

#55: „jedes halbe Jahr gibt es Gespräche, um zu sehen, wo Unzufriedenheiten aufkommen, und sie dann zu korr-
rigieren."

Diese Aktivitäten scheinen in der Regel die gewünschten Effekte zu zeitigen. Von dem Interviewpartner eines großen
Unternehmens wurde noch auf eine andere Kategorie von Widerständen gegen Innovationsaktivitäten hingewiesen.
Hier wurden die Rentendevorgaben (letztendlich durch die Anteilseigner) als ein wichtiges Hindernis für weitergehen-
de Innovationsaktivitäten angesehen.

#9002: „Hauptwiderstände kommen aus der Betriebswirtschaft, aus der Vorgabe für die Umsatzrendite (7-8 %,
obwohl der Gewinn nicht ausgeschüttet wird, sondern im Unternehmen verbleibt). Die eigenen internen
Effizienzvorgaben sind die größten Innovationskiller. Die Tatsache, dass ich betriebswirtschaftlich heute
ein Ergebnis liefern muss, ist eigentlich der Feind der Innovation."

Dies kann als Hinweis darauf gesehen werden, dass – zumindest von den in den Unternehmen für FuE bzw. im wei-
teren Sinne für Innovationen Verantwortlichen – die zunehmend auf kürzere Fristen ausgerichteten Unternehmens-
zeile als innovationsbehindernd angesehen werden. Sind doch Projekte, die auf eher radikale Innovationen zielen,
vom hohen Unsicherheits hinsichtlich ihres Ausgangs und von eher langfristig wirksamen Rückflüssen gekennzeichnet.

3.6 Kooperation und Arbeitsteilung

Bei ihren Innovationsaktivitäten kooperieren Unternehmen nicht selten mit anderen Unternehmen, Hochschulen oder sonstigen Wissenschaftseinrichtungen (vgl. Egeln/Crass, 2015, S. 13). Dies ist auch bei den hier interviewten Unternehmen der Fall.

3.6.1 Kooperationen bei Innovationsprojekten

Sehr häufig haben die Unternehmen Kooperationspartner aus verschiedenen Kategorien. So gab mehr als die Hälfte an, bei Innovationsprojekten mit anderen Unternehmen zu kooperieren, rund vier Fünftel hatten Innovationskooperationen mit Hochschulen (Universitäten und/oder Fachhochschulen) und ebenfalls über die Hälfte arbeitete bei Innovationsprojekten mit außeruniversitären öffentlich finanzierten Forschungseinrichtungen zusammen.

Die Unternehmen betonen, dass sie eine Präferenz für eine bestimmte Kategorie von Kooperationspartner nur schwer benennen können. Es kommt für sie auf die konkreten Personen an, mit denen sie in den Projekten zusammen arbeiten müssen, auf die „Köpfe“.

Als wichtiges Motiv für Kooperationen mit öffentlichen Forschungseinrichtungen wird von eher kleineren Unternehmen immer wieder genannt, dass dadurch die Möglichkeit zur Nutzung von Kompetenzen und insbesondere auch Infrastruktur („Know-how... Labore... Infrastruktur...“) ermöglicht wird, die in den Unternehmen selbst nicht vorhanden ist (bzw. nicht vorhanden sein kann).

Die Kooperation mit Wissenschaftseinrichtungen hat für die Unternehmen wohl einen besonderen Stellenwert. Das wird nicht nur aus der Verteilung der Kooperationspartner auf unterschiedliche Kategorien deutlich, sondern auch aus der Tatsache, dass sich viele kaum Substitute für die Wissenschaftspartner vorstellen können.

Für die Kooperationen, insbesondere in kleineren Projekten oder solchen, in deren Rahmen Abschlussarbeiten von Studentinnen und Studenten erarbeitet werden, spielt die Motivation, Studentinnen und Studenten kennenzulernen und auf mögliche Geeignetheit für das Unternehmen zu „testen“, auch eine Rolle.

In fast allen Fällen sind die Innovationskooperationen als gemeinsame Projekte organisiert, eher selten ist eine Auftragsvergabe an andere. Die interviewten Unternehmen sehen eine Kooperation mit Ingenieurbüros grundsätzlich

1 Egeln, J und D. Crass, 2015, Ingenieurinnen und Ingenieure in unternehmerischen Innovationsprozessen: Die Sicht der Unternehmen, Berichtsteil I: Repräsentative Ergebnisse zum Innovationsverhalten von Unternehmen, Gutachten für das MWK Baden-Württemberg
nicht als Alternative zu Kooperationen mit Wissenschaftseinrichtungen an. Kooperationen mit diesen würden sie nur in Ausnahmefällen eingehen.\footnote{Hier drängt sich der Eindruck auf, dass die Möglichkeit, „günstig“ komplexe Infrastruktur zu nutzen, für die Unternehmen ein ganz wichtiges Motiv für die Kooperation mit Wissenschaftseinrichtungen ist. Die Kooperation mit Ingenieurbüros bietet diese Möglichkeit in der Regel nicht.}

Der regionalen Nähe schreiben die interviewten Unternehmen keine sehr hohe Bedeutung als Auswahlkriterium für Kooperationspartner zu. Kooperationen werden deutschlandweit eingegangen, gelegentlich auch mit ausländischen Partnern.

\textit{#468: „Für die Forschung wird quasi die Landkarte durchforstet, wer hat etwas, das interessant sein könnte.“}

3.6.3 Zur Rolle der Grundlagenforschung

\textit{#43: „Unsere Forschung ist eher marktgetrieben.“}

Eine Ausnahme sehen die Unternehmen hierbei allerdings für die Software-Branche. Für diesen Bereich schreiben die meisten interviewten Unternehmen die zentralen Innovationen des IT-Bereichs (auch Grundlagen) der Forschungsarbeit der Unternehmen zu und nicht den Wissenschaftseinrichtungen.\footnote{Für die tatsächlichen Grundlagen von beispielsweise dem Internet oder auch dem MP3-Format ist das allerdings eine Fehleinschätzung.}

\textit{#38: „nennen Sie mir Grundlagenforschung, die nicht aus Unternehmen kommt“}

Ein knappes Drittel der Interviewten sieht die Grundlagenforschung, zumindest zum Teil, auch als Unternehmensaufgabe an. Hierbei wird allerdings eine starke Anknüpfung „an die Praxis“ und an Unternehmensbedürfnisse erwartet. Die Unternehmen bewegen sich mit diesen Vorstellungen allerdings schon in einem Bereich, der als Grenzbe reich zur anwendungsorientierten Forschung gesehen werden kann. Denn auch solche Unternehmen, die ihre Aktivitäten selbst als Grundlagenforschung einstufen, haben die Markteinführung neuer Produkte als formuliertes Ziel.

\textit{#456: „Anwendungsorientierte Grundlagenforschung in der Industrie. Reine Grundlagenforschung an den Universitäten.“}

3.7 Ingenieurinnen und Ingenieure in den Unternehmen

3.7.1 Einsatzbereiche und Rollen

Die Bedeutung von Ingenieurinnen und Ingenieuren für die \textit{Innovationsaktivitäten} der interviewten Unternehmen wird auch aus ihrem Anteil an der Beschäftigung in diesem und für diesen Bereich deutlich. Ingenieurinnen und Ingenieure stellen im Mittel 65 Prozent des Innovationspersonals dieser Unternehmen (Median: 75 Prozent). Sie sind dabei auf allen Stufen des Innovationsprozesses im Einsatz. So setzen fast drei Viertel der Interviewten bei Ideenfindung, Konzeption und Umsetzung der Innovationsprojekte auf Ingenieurinnen und Ingenieure, knapp die Hälfte beschäftigt Ingenieurinnen und Ingenieure auch bei der Vermarktung der Innovationen.
Anhang

#85: „Technische Kompetenz der Ingenieurinnen und Ingenieure ist für die Kommunikation mit den Kunden wichti-
tig.“

Der weit überwiegende Teil der interviewten Unternehmen sieht in seinen Ingenieurinnen und Ingenieuren die Haupt-
träger seiner Innovationsprojekte.

Die ingenieurwissenschaftlichen Disziplinen, denen die in den interviewten Unternehmen beschäftigten Ingenieurin-
nen und Ingenieure zuzurechnen sind, sind sehr stark von den Branchen der Unternehmen und den für sie relevanten
Technologiefeldern geprägt. Die Auswahl der Unternehmen prägt somit die Verteilung über die Disziplinen. Sehr häufig,
und unabhängig von Branche und Technologie, wird „Softwareingenieurin bzw. Softwareingenieur“ oder „Wirt-
chaftsingenieurin bzw. Wirtschaftsingenieur“ genannt.

Hochschulabsolventinnen und -absolventen werden von rund drei Viertel der Unternehmen zunächst anders einge-
setzt als erfahrene Ingenieurinnen und Ingenieure. Neu eingestellte Ingenieurinnen und Ingenieure werden meist in
kleinen Projektteams integriert, um Erfahrung zu sammeln. Die Unternehmen geben als Einlernphase einen Zeitraum
von bis zu drei Jahren an, nach dem dann keine grundsätzlichen Unterschiede von eingestellten Hochschulabsolven-
tin- en und -absolventen zu anderen Ingenieurinnen und Ingenieuren bestehen.

Die interviewten Unternehmen haben keine identifizierbaren Unterschiede in den Einsatzbereichen für Absolventin-
nen und Absolventen nach den Hochschulkategorien Universität, Fachhochschule und DHBW benannt.

Hinsichtlich der Abschlüsse Bachelor, Master oder Promotion lässt sich feststellen: Je höher der formale Abschluss,
desto „näher“ ist der Einsatz der Absolventinnen und Absolventen an der FuE der Unternehmen. Dies ist allerdings
nur ein grundsätzlicher Trend, im Einzelfall gibt es auch viele Abweichungen von diesem. Die interviewten Unter-
nehmen äußerten eine generelle Skepsis hinsichtlich des Bachelor-Abschlusses für Ingenieurinnen und Ingenieure.

3.7.2 Qualifikation und Akquisition

Für die Mehrheit der interviewten Unternehmen erfüllt die Ausbildung an den Universitäten und Hochschulen durch-
aus ihre Qualifikationsanforderungen an Ingenieurinnen und Ingenieure. Besonders stark ist diesbezüglich die Zu-
friedenheit bei den interviewten Unternehmen aus dem Bereich Software/EDV, wohingegen die befragten FuE-
Dienstleister und Ingenieurbüros überwiegend ihren Qualifikationsbedarf als nicht erfüllt ansehen.

Grundsätzlich haben die interviewten Unternehmen auch nicht den Wunsch nach einer Verschiebung der Gewichte in
der akademischen Ausbildung hin „zu mehr Praxis“ oder hin „zu mehr Theorie“ geäußert. Vielfach herrschte die An-
sicht, dass eine solide theoretisch-wissenschaftliche Ausbildung eine gute Grundlage sei, um sich anwendungsbe-
zogene praxisrelevante Fähigkeiten darauf aufbauend noch aneignen. Diese positive Einschätzung wurde von den
meisten der interviewten Unternehmen auch in Bezug auf die Ausbildungssituation für Ingenieurinnen und Ingenieu-
re in Baden-Württemberg geäußert.

#582: „Gutes Grundlagenwissen, die Praxis kann man dann im Betrieb beibringen."

#503: „Wenn die Bereitschaft dazu da ist, kann man den Praxisbezug jedoch lernen. Daher sollte in der Hoch-
schule der Schwerpunkt auf der Theorie-/Wissenschaftsorientierung liegen."

#39: „In Baden-Württemberg ist die Ingenieurausbildung gut aufgestellt.“

Trotz dieser grundsätzlichen Zufriedenheit gibt etwa die Hälfte der interviewten Unternehmen an, speziell für neu
engestellte Ingenieurinnen und Ingenieure interne Weiterbildung durchzuführen. Korrespondierend zu der oben darge-
legten Einschätzung der Hochschulqualifikation nach Branchen führen die befragten Unternehmen im Bereich
Software/EDV eine Weiterbildung für Ingenieurinnen und Ingenieure seltener durch (30 Prozent) als der Durchschnitt,
die Befragten der technischen/FuE-Dienstleister/Ingenieurbüros dagegen führen speziell für Ingenieurinnen und Ing-
enieure überdurchschnittlich häufig (90 Prozent) Weiterbildungen durch.

Die meisten Unternehmen geben an, dass sie mit diesen Weiterbildungen für Hochschulabsolventinnen und
-absolventen unternehmensspezifische Kompetenzen und Kenntnisse vermitteln. Das Füllen von Lücken der
Hochschulbildung steht eher nicht im Vordergrund. Kleine Unternehmen geben eher als große an, dass sie Lücken in
der Hochschulbildung schließen müssten.

Die von den interviewten Unternehmen benannten Qualifikationen, die nach ihrer Einschätzung in der Ausbildung
bisher fehlten, jedoch wichtig seien, lagen häufig jenseits der Disziplingrenzen für Ingenieurinnen und Ingenieure.
Zum einen zielte das auf generelle Kommunikationstechniken zum anderen auf wirtschaftliche und rechtliche
Kenntnisse.

#468: „Die gute Balance wie bisher beibehalten“.
#503: „Zentrale Kompetenz: Gesunder Menschenverstand; in Systemen denken können, nicht in Details; Forschungserfahrung nur im Einzelfall (wir suchen dann gezielt Dr.-Ing.).“

#503: „Man vermisst den FH/Uni-Dipl.-Ing. In der Regel nimmt man Master.“

#85: „Ein gutes theoretisches Fundament ist unerlässlich. ... Es fehlt die Kompetenz, die der alte Diplomabschluss mitgebracht hat.“

Es sind vor allem die klaren Kompetenzsignale, die in der Vor-Bologna-Zeit mit den Abschlüssen der unterschiedlichen Hochschultypen verbunden waren, die die Unternehmen vermissen. Der Arbeitsmarkt für Ingenieurinnen und Ingenieure ist für sie deutlich unübersichtlicher geworden. Viele interviewte Unternehmen geben an, dass sie aus diesem Grund einen erheblich höheren Aufwand bei der Suche nach Ingenieurinnen und Ingenieuren betreiben müssten als früher. Insbesondere die Modularisierung der Studiengänge und die dadurch entstandenen Heterogenitäten auch zwischen Abschlüssen des gleichen Hochschultyps würden einen hohen Informationsaufwand für die suchenden Unternehmen erzwingen.

#P2: „Wir müssen heute, wenn wir eine Stelle besetzen wollen, fünfmal so viele Bewerberinnen und Bewerber durch das Unternehmen schleusen, als wir das noch vor zehn Jahren gemacht haben. Weil die so spezialisiert sind. Aus der Papierform wird das nicht ersichtlich, daher müssen wir so viele Kandidatinnen und Kandidaten einladen, um herauszufinden, was hat die oder der drauf.“

#P2: „Wir hatten es perfekt: Universitäten und Fachhochschulen; jetzt heißen die alle Master und Bachelor; man muss nun genau schauen, wo kommt jemand her und was hat sie oder er genau gemacht (in das Curriculum schauen).”

#547: „Man richtet sich nicht nach Abschluss, eher nach den Noten und nach den individuellen Kenntnissen.“

Auch für die Zukunft erhoffen sich die allermeisten der befragten Unternehmen nicht viel von Absolventinnen und Absolventen mit einem Bachelor-Abschluss (entsprechend ihrer weiter oben in Bezug auf die gegenwärtige Situation berichteten Skepsis). Bachelor-Absolventinnen und -Absolventen werden von einer größeren Gruppe von Unternehmen nicht als vollwertig ausgebildete Ingenieurinnen und Ingenieure wahrgenommen.

#503: „Bachelor kann nichts, hat aber ein hohes Selbstbewusstsein. (Das ist im Einzelfall ungerecht, aber im Allgemeinen ist das meine Wahrnehmung). Wir stellen daher nur Absolventinnen und Absolventen mit Master ein.“

#461: „Kombinierte Masterabschlüsse zwischen Theorie und Praxis (Dual, FH) sind am besten für den Mittelstand, Bachelor ist generell oft nicht fundiert genug."

Zukünftig benötigte Kompetenzen

Der Bedarf an Auslandserfahrung oder Forschungserfahrung wird nur vereinzelt als wichtige Anforderung benannt, für die meisten interviewten Unternehmen sind dies keine übermäßig wichtigen Kompetenzen. Etliche Unternehmen verweisen auf die Bedeutung der guten Kenntnis der englischen Sprache (internationale Kunden, Lesen von englisch abgefassten Patentschriften). Diesbezüglich sehen die Befragten aber deutlichen Fortschritte bei den Absolventinnen und Absolventen im Vergleich zu früher.

Wege der Akquisition von Ingenieurinnen und Ingenieuren

Darüber hinaus nutzen die interviewten Unternehmen vielfältige Akquisitionswege: Anwerbungen im Rahmen von Forschungskooperationen mit Wissenschaftseinrichtungen oder anderen Unternehmen, klassische Stellenausschreibungen und die Nutzung von Netzwerken.

3.7.3 Verfügbarkeit

Verfügbarkeitsprobleme

Es lassen sich einige Strukturen identifizieren, die für die unterschiedliche Einschätzung über Verfügbarkeitsprobleme für Ingenieurinnen und Ingenieure vorliegen.

Die interviewten Unternehmen weisen geradezu erstaunliche adaptive Erwartungen hinsichtlich ihrer zukünftigen Lage als Nachfrager nach Ingenieurinnen und Ingenieuren auf dem Arbeitsmarkt auf. D.h., wenn sie gegenwärtig Probleme haben, ihren Ingenieurbedarf am Arbeitsmarkt zu decken, dann erwartet sie dies auch für die Zukunft. Haben sie gegenwärtig keine Probleme und werden in für sie hinreichendem Maße fündig, dann erwarten sie auch keine Anwerbeschwierigkeiten in der näheren Zukunft.

Von den befragten Unternehmen geben eher mittlere und große Unternehmen an, dass sie Probleme bei der Akquise von Ingenieurinnen und Ingenieuren haben und erwarten, als kleine Unternehmen. Es zeigt sich, dass diese Unternehmen nicht nur absolut mehr Ingenieurinnen und Ingenieure beschäftigen als die kleinen Unternehmen (ohne größere Einstellungsprobleme), sondern in der Regel auch ein deutlich höherer Anteil ihrer Mitarbeiterinnen und Mitar-
beiter Ingenieurinnen und Ingenieure sind. Es kann vermutet werden, dass diese Unternehmen viel häufiger als die anderen mit der Suche nach und der Einstellung von Ingenieurinnen und Ingenieuren beschäftigt sind. Es kann sein, dass sie dadurch eine andere Wahrnehmung haben, da sie viel häufiger als die anderen Unternehmen überhaupt mit Problemen der genannten Art konfrontiert werden. Für Unternehmen, die nur alle paar Jahre als Nachfrager auf dem Arbeitsmarkt für Ingenieurinnen und Ingenieure auftreten, stellt sich die (gleiche) Lage unter Umständen anders dar. Gerade kleine interviewte Unternehmen betrachten Verfügbarkeit von Ingenieurinnen und Ingenieuren häufig als eine Frage des Preises für diese Qualifikation. Sie betonen die starke Konkurrenz großer Unternehmen um geeignete Ingenieurinnen und Ingenieure, deren Vorteil sich zum einen aus der hohen Attraktivität dieser großen Firmen für Ingenieurinnen und Ingenieure speist (bieten vielleicht die Lebensstellung) und zum anderen aber auch ganz wesentlich durch die besseren Gehaltmöglichkeiten bei diesen Firmen erklärt wird.

#503: „Es gibt ein Vergütungsproblem bei Ingenieurinnen und Ingenieuren in der Metropolregion mit Bosch und Daimler, EnBW. Kleine Unternehmen sind da nicht konkurrenzfähig... (Gehaltsniveau und Nebenleistungen).“

Inhaltlich werden Probleme hinsichtlich IT-, Software- und Elektrotechnikspezialistinnen bzw. -spezialisten erwartet. Lösungsversuche zur Minderung von Verfügbarkeitsproblemen

Viele der interviewten Unternehmen wollen ihre Kooperationen mit Hochschulen gezielt ausbauen, um Ingenieurabsolventinnen und -absolventen für ihr Unternehmen zu gewinnen. Auch dabei sehen sich gerade die kleineren der befragten Unternehmen im Nachteil.

#570: „Zu sehr großen Unternehmen werden von den Hochschulen/Universitäten sehr intensiv Kontakte aufgebaut; KMU werden leider nicht angesprochen.“

Einige wenige der befragten Unternehmen haben die Hoffnung auf eine Lösung ihres Ingenieur-Knappheitsproblems aufgegeben und verlagern ihre Betriebe ins Ausland.

#P2/9002: „Wir müssen Ingenieurarbeitsplätze in andere Länder verlegen und bauen Entwicklungsabteilungen in Italien und Großbritannien auf.“

#426: „Wir haben eine Tochtergesellschaft in Rumänien gegründet - hätten wir hier genügend Know-how zu angemessenen (deutschen, nicht rumänischen) Bedingungen, wäre diese Tochtergesellschaft nicht unbe dingt nötig gewesen.“

#155: „Wie gehen Sie damit um? Aktivitäten eventuell ins Ausland verlagern.“

3.8 Zentrale Ergebnisse

In diesem Kapitel werden die aus Sicht der Autoren wichtigsten Ergebnisse aus der Analyse der Informationen aus der qualitativen Erhebung bei baden-württembergischen Unternehmen in ingenieurintensiven Branchen aufgelistet. Es muss nochmals betont werden, dass die Befunde in diesem Projektteil nicht repräsentativ für die Unternehmen in Deutschland oder in Baden-Württemberg sind. Sie reflektieren die Sicht der befragten Unternehmen zu den in der Erhebung thematisierten Fragen, die sich im Zusammenhang mit Ingenieurinnen und Ingenieuren in unternehmerischem Innovationsprozessen stellen.

- Ingenieurinnen und Ingenieure werden als die zentralen Mitarbeiterinnen und Mitarbeiter im Innovationsprozess der Unternehmen gesehen. Sie machen einen Großteil des Innovationspersonals aus und leisten auch qualitativ entscheidende Beiträge für Innovationen. Dies gilt für alle Stufen der Innovationsprozesse, von den Ideen und Impulsen (Haupttreiber) bis zur Vermarktung der Innovationen (Kompetenz auf Augenhöhe mit den Kunden).

- Technologisch werden die Erwartungen der Unternehmen stark von den Folgen der Internetrevolution angereg. Industrie 4.0 wird – zumindest in einem weiten Sinne – als das Zukunftsthema angesehen, mit weit-
reichenden Folgen auch für die einzelnen Unternehmen. Das hat eine starke Betonung der Bedeutung der IT-Technologie zur Folge, insbesondere bezogen auf die durch Software begründeten besonderen Produkteigenschaften.

- Die Motivation der Mitarbeiterinnen und Mitarbeiter für die Innovationsaktivitäten der Unternehmen erfolgt selten durch konkrete monetäre Anreize; Innovation gehört vielmehr zum Selbstverständnis der Mitarbeiterinnen und Mitarbeiter, insbesondere von Ingenieurinnen und Ingenieuren.

- Grundlagenforschung sollte aus Sicht der Unternehmen vornehmlich an den Wissenschaftseinrichtungen stattfinden, insbesondere wenn es um Vorhaben geht, die lange Laufzeiten haben und deren Ausgang höchst ungewiss ist. Die in den Unternehmen geleistete Grundlagenforschung hat häufig einen klaren Anwendungsbezug und mündet in relativ kurzer Zeit (zwei bis drei Jahre) in neue Produkte oder Verfahren.

- Der Abschluss „Diplom-Ingenieurin/Diplom-Ingenieur“ wird von vielen der Unternehmen vermisst. Er galt vielen von ihnen als international eingeführte Qualitätsmarke und als Studiengang mit Freiräumen für praktische Erfahrungen (Studentenjobs, Praktika).

- Bachelor-Absolventinnen und -Absolventen werden von einer größeren Gruppe der Unternehmen nicht als vollwertig ausgebildete Ingenieurinnen und Ingenieure wahrgenommen.

3.9 Interview-Leitfaden

Leitfaden für eine qualitative Erhebung zum Themenkomplex „Innovationsprozess in Unternehmen: Organisation und Ausrichtung, Relation zur Wissenschaft, Rolle und Bedeutung von Ingenieurinnen und Ingenieuren“

1. Innovator

1.1 Hat Ihr Unternehmen im Verlauf der letzten drei Jahre neue oder merklich verbesserte Produkte/Dienstleistungen entwickelt und auf den Markt gebracht?

2. Organisation und Ausrichtung des Innovationsprozesses

2.1 Beschreiben Sie ein typisches Beispiel für ein Innovationsprojekt in Ihrem Unternehmen. (Hinweis Interviewer: Art der Innovation soll deutlich werden.)

2.2 Welche Strategien haben Sie, um aus Ideen marktgängige Produkte zu entwickeln?

2.3 Hat Ihr Unternehmen ein strukturiertes Wissensmanagement?
 - Wenn ja, was sind seine wesentlichen Merkmale?
 - Welche Technologien haben für Ihr Unternehmen gegenwärtig die größte Bedeutung?
 - Welche davon werden in den nächsten 5-10 Jahren eher an Bedeutung für Sie verlieren? Welche werden für Sie eher wichtiger werden?

3. Relation zur Wissenschaft

3.1 Wie motivieren Sie Ihre eigenen Mitarbeiterinnen und Mitarbeiter für Innovationen? Gibt es konkrete Anreize?

3.2 Wie begegnen Sie eventuellen internen Widerständen gegen Innovationsprojekte?

3.3 Arbeitet Ihr Unternehmen mit anderen Unternehmen, Ingenieurbüros, Hochschulen und/oder Forschungseinrichtungen zusammen?
 - (Wenn ja ggf. Nachfrage: Welche Einrichtungen? Auch Fachhochschulen?)
 - (Wenn Kooperation mit Fachhochschulen:)
 - Was sind Ihre Motive für die Kooperation?
 - Worin besteht die Leistung, die die Fachhochschule erbringt?
 - Wie kommen Kooperationen zustande?
 - Suchen Sie passende Kooperationspartner oder kommen die auf Sie zu?
 - (ggf. separiert nach Partnertypen)

3.4 Wie ist die Kooperation organisiert? (Aufträge, gemeinsame Projekte, eher informell)

3.5 Ist die Vergabe von Aufträgen an entsprechende Ingenieurbüros eine Alternative zur Kooperation mit Hochschulen?

3.6 Ganz grundsätzlich: Sollte die Grundlagenforschung hauptsächlich in der Wissenschaft stattfinden oder auch in Unternehmen?

4. Rolle und Bedeutung von Ingenieurinnen und Ingenieuren

4.1 Wo sind Ingenieurinnen und Ingenieure im Verlauf des Innovationsprozesses in Ihrem Unternehmen relevant?
 - Evtl. Nachfragen: Spielen Ingenieurinnen und Ingenieure auch bei der Ideenfindung eine Rolle?
 - Evtl. Nachfragen: Spielen Ingenieurinnen und Ingenieure auch bei der Konzipierung der Projekte eine Rolle?
 - Evtl. Nachfragen: Spielen Ingenieurinnen und Ingenieure auch bei der Umsetzung der Projekte eine Rolle?
 - Evtl. Nachfragen: Spielen Ingenieurinnen und Ingenieure auch bei der Vermarktung der Innovationen eine Rolle?

4.2 Wo werden die Ingenieurinnen und Ingenieure hauptsächlich eingesetzt?
 - Forschung - Entwicklung/Konstruktion - Produktion - Vertrieb - Service

4.3 Können Sie sagen, wie viele Mitarbeiterinnen und Mitarbeiter in Ihrem Unternehmen beschäftigt sind und wie viele davon Ingenieurinnen bzw. Ingenieure sind?

4.4 Was sind die wichtigsten Disziplinen, zu denen diese Ingenieurinnen und Ingenieure gehören? (Maschinenbau, Elektrotechnik, Verfahrenstechnik, ...)

4.5 Wenn Sie an alle Mitarbeiterinnen und Mitarbeiter denken, die an einem typischen Innovationsprojekt beteiligt sind: Wie hoch ist der Anteil der Ingenieurinnen und Ingenieure?
- Können Sie den inhaltlichen Beitrag der Ingenieurinnen und Ingenieure quantifizieren? D.h. sind Ingenieurinnen und Ingenieure Haupttreiber der Innovationsaktivitäten oder spielen sie eher eine nachgelagerte Rolle?

4.6 Wenn Sie nur an direkt nach Abschluss des Hochschulstudiums eingestellte Hochschulabsolventinnen und -absolventen denken, werden die genauso eingesetzt oder gibt es eine senioritäts-/erfahrungsbedingte funktionsbezogene Ingenieur"laufbahn" in Ihrem Unternehmen?

4.7 Halten Sie in den nächsten 10 Jahren eine Veränderung der Ingenieurausbildung eher zu mehr Theorie-/Wissenschaftsorientierung oder eher zu mehr Praxis-/Anwendungsoorientierung für nötig?

4.8 Brauchen Sie eher Spezialisten hinsichtlich methodischer, fachlicher und organisatorischer Kompetenzen oder sehr breit ausgebildete Generalisten?
- Beschreiben Sie die zentralen methodischen, fachlichen und organisatorischen Kompetenzen der für Ihr Unternehmen wichtigsten Gruppe von Ingenieurinnen und Ingenieuren.
- Wenn nicht genannt, konkret nach Forschungserfahrung und Auslandserfahrung fragen.

4.9 Wo und wie gewinnen Sie Ingenieurinnen und Ingenieure mit den für Sie relevanten Kompetenzen? (z. B. Hochschulabsolventinnen und -absolventen, erfahrene Ingenieurinnen und Ingenieure aus anderen Unternehmen)

4.10 Gibt es interne Weiterbildungen speziell für neu eingestellte Ingenieurinnen und Ingenieure?
- Wenn ja: Vermitteln Weiterbildungen in erster Linie unternehmensspezifische Kompetenzen? Oder werden Lücken in der Hochschulausbildung geschlossen?
- Wenn nein: Erfüllt die Ingenieurausbildung an Hochschulen den Qualifikationsbedarf?

4.11 Die akademischen Abschlüsse für Ingenieurinnen und Ingenieure sind in den letzten Jahren komplexer und unübersichtlicher geworden.
- Es gibt Absolventinnen und Absolventen von Universität – Fachhochschule – DHBW sowie die Abschlüsse: Bachelor – Master – Promotion

Welche Kompetenzen/Unterschiede verbinden Sie mit den verschiedenen Abschlüssen?
- Gibt es unterschiedliche Einsatzbereiche für Absolventinnen und Absolventen von Dualer Hochschule, Fachhochschule und Universität?
- Gibt es unterschiedliche Einsatzbereiche für Ingenieurinnen und Ingenieure mit Bachelor-, Masterabschluss oder Promotion?

4.12 Können Sie Ihren zukünftigen Bedarf an Ingenieurinnen und Ingenieuren nach
- Absolventinnen und Absolventen von Universität – Fachhochschule – DHBW sowie den Abschlüssen Bachelor – Master – Promotion abschätzen?

4.13 Glauben Sie, dass Sie Probleme haben werden, Ihren Bedarf an Ingenieurinnen und Ingenieuren in den nächsten 5 Jahren zu decken?
- Wenn ja: In welchen Disziplinen erwarten Sie Probleme?
- Wenn ja: Wie gehen Sie damit um?
4. Grundlegende Daten

Abbildung A-18: Studienanfängerinnen und -anfänger im Bachelor Ingenieurwissenschaften nach Hochschulart und Gender sowie Anteil Frauen insgesamt

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission

Abbildung A-19: Studienanfängerinnen und -anfänger im Master Ingenieurwissenschaften nach Hochschulart und Gender sowie Anteil Frauen insgesamt

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission
Abbildung A-20: Studienanfängerinnen und -anfänger im Bachelor in ausgewählten Disziplinen der Ingenieurwissenschaften

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission

Abbildung A-21: Studienanfängerinnen und -anfänger im Master in ausgewählten Disziplinen der Ingenieurwissenschaften

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission
Abbildung A-22: Absolventinnen und Absolventen im Bachelor Ingenieurwissenschaften nach Hochschulart und Gender sowie Anteil Frauen insgesamt

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission

Abbildung A-23: Absolventinnen und Absolventen im Master Ingenieurwissenschaften nach Hochschulart und Gender sowie Anteil Frauen insgesamt

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission
Abbildung A-24: Absolventinnen und Absolventen im Bachelor in ausgewählten Disziplinen der Ingenieurwissenschaften

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission

Abbildung A-25: Absolventinnen und Absolventen im Master in ausgewählten Disziplinen der Ingenieurwissenschaften

Quelle: Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission
Abbildung A-26: Entwicklung der eingerichteten Sonderforschungsbereiche (SFB), einschließlich der Transregio-Sonderforschungsbereiche (TRR) und Transferforschungsbereiche (TFB), in Baden-Württemberg 2004-2013

Quelle: Deutsche Forschungsgemeinschaft (2015), Datenbank
Tabelle A-2: Absolute und personalrelativierte DFG-Bewilligungen für 2008 bis 2010 nach Hochschulen in den Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Hochschule</th>
<th>Absolute DFG-Bewilligungssumme</th>
<th>Personalrelativierte DFG-Bewilligungssumme 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gesamt (Mio. €)</td>
<td>Hochschule</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professorenschaft N</td>
</tr>
<tr>
<td>Aachen TH</td>
<td>160,6</td>
<td>Aachen TH 155</td>
</tr>
<tr>
<td>Darmstadt TU</td>
<td>84,6</td>
<td>Bremen U 51</td>
</tr>
<tr>
<td>Karlsruhe KIT</td>
<td>83,6</td>
<td>Darmstadt TU 113</td>
</tr>
<tr>
<td>München TU</td>
<td>74,0</td>
<td>Hannover U 86</td>
</tr>
<tr>
<td>Stuttgart U</td>
<td>66,6</td>
<td>Hannover U 82</td>
</tr>
<tr>
<td>Hannover U</td>
<td>62,6</td>
<td>Karlsruhe KIT 123</td>
</tr>
<tr>
<td>Dresden TU</td>
<td>58,7</td>
<td>Freiburg U 33</td>
</tr>
<tr>
<td>Erlangen-Nürnberg U</td>
<td>58,6</td>
<td>Freiberg TU 39</td>
</tr>
<tr>
<td>Bremen U</td>
<td>48,2</td>
<td>Saarbrücken U 42</td>
</tr>
<tr>
<td>Dortmund TU</td>
<td>44,6</td>
<td>München TU 150</td>
</tr>
<tr>
<td>Berlin-TU</td>
<td>43,4</td>
<td>Bochum U 61</td>
</tr>
<tr>
<td>Braunschweig TU</td>
<td>41,1</td>
<td>Stuttgart U 139</td>
</tr>
<tr>
<td>Bochum U</td>
<td>29,5</td>
<td>Dortmund TU 95</td>
</tr>
<tr>
<td>Saarbrücken U</td>
<td>23,8</td>
<td>Braunschweig TU 100</td>
</tr>
<tr>
<td>Freiberg TU</td>
<td>22,3</td>
<td>Chemnitz TU 53</td>
</tr>
<tr>
<td>Chemnitz TU</td>
<td>21,5</td>
<td>Paderborn U 46</td>
</tr>
<tr>
<td>Irmelau TU</td>
<td>20,7</td>
<td>Dresden TU 160</td>
</tr>
<tr>
<td>Freiburg U</td>
<td>20,5</td>
<td>Irmelau TU 58</td>
</tr>
<tr>
<td>Hamburg-Harburg TU</td>
<td>18,6</td>
<td>Ulm U 35</td>
</tr>
<tr>
<td>Paderborn U</td>
<td>17,8</td>
<td>Clausthal U 45</td>
</tr>
<tr>
<td>Kaiserslautern TU</td>
<td>16,7</td>
<td>Kiel U 39</td>
</tr>
<tr>
<td>Duisburg-Essen U</td>
<td>16,7</td>
<td>Rostock U 52</td>
</tr>
<tr>
<td>Clausthal TU</td>
<td>14,0</td>
<td>Berlin TU 172</td>
</tr>
<tr>
<td>Rostock U</td>
<td>13,2</td>
<td>Duisburg-Essen U 79</td>
</tr>
<tr>
<td>Kassel U</td>
<td>12,8</td>
<td>Kaiserslautern U 83</td>
</tr>
<tr>
<td>Magdeburg U</td>
<td>12,5</td>
<td>Hamburg-Harburg TU 92</td>
</tr>
<tr>
<td>Kiel U</td>
<td>11,9</td>
<td>Magdeburg U 68</td>
</tr>
<tr>
<td>Ulm U</td>
<td>11,4</td>
<td>Kassel U 84</td>
</tr>
<tr>
<td>Bielefeld U</td>
<td>10,7</td>
<td>Siegen U 73</td>
</tr>
<tr>
<td>Siegen U</td>
<td>10,6</td>
<td>Weimar U 54</td>
</tr>
<tr>
<td>Heidelberg U</td>
<td>8,8</td>
<td>Cottbus TU 92</td>
</tr>
<tr>
<td>Bayreuth U</td>
<td>7,9</td>
<td>München UdBW 109</td>
</tr>
<tr>
<td>Jena U</td>
<td>7,8</td>
<td>Wuppertal U 76</td>
</tr>
<tr>
<td>Weimar U</td>
<td>7,5</td>
<td>Karlsruhe HSTW 129</td>
</tr>
<tr>
<td>Tübingen U</td>
<td>7,3</td>
<td>Hamburg HCU 44</td>
</tr>
<tr>
<td>München UdBW</td>
<td>6,3</td>
<td>Kiel FH 42</td>
</tr>
<tr>
<td>Bonn U</td>
<td>6,1</td>
<td>Bonn-Rhein-Sieg HS 53</td>
</tr>
<tr>
<td>Oldenburg U</td>
<td>5,8</td>
<td>Aalen HTW 84</td>
</tr>
<tr>
<td>Konstanz U</td>
<td>5,6</td>
<td>Berlin BHST 166</td>
</tr>
<tr>
<td>Coburg TU</td>
<td>5,3</td>
<td>Münster FH 90</td>
</tr>
<tr>
<td>Rang 1– 40</td>
<td>1.200,1</td>
<td>3.348</td>
</tr>
<tr>
<td>Weitere HS</td>
<td>77,1</td>
<td>7.076</td>
</tr>
<tr>
<td>HS insgesamt</td>
<td>1.277,2</td>
<td>10.424</td>
</tr>
<tr>
<td>davon Univ.</td>
<td>1.270,1</td>
<td>3.283</td>
</tr>
</tbody>
</table>

1) Die rankingbezogenen Berechnungen erfolgen nur für Hochschulen, an denen 30 und mehr Professorinnen und Professoren bzw. 150 und mehr Wissenschaftlerinnen und Wissenschaftler insgesamt im Jahr 2009 im hier betrachteten Wissenschaftsbereich hauptberuflich tätig waren.

Datenbasis und Quellen:

Die Hochschulen mit den absolut und personalrelativiert höchsten DFG-Bewilligungen für 2011 bis 2013 in den Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Absolutes DFG-Bewilligungssumme</th>
<th>Personrelativierte DFG-Bewilligungssumme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochschule</td>
<td>Gesamt</td>
</tr>
<tr>
<td>Aachen TH</td>
<td>143,5</td>
</tr>
<tr>
<td>Darmstadt TU</td>
<td>88,4</td>
</tr>
<tr>
<td>Erlangen-Nürnberg U</td>
<td>74,4</td>
</tr>
<tr>
<td>Stuttgart U</td>
<td>74,3</td>
</tr>
<tr>
<td>Karlsruhe KIT</td>
<td>74,2</td>
</tr>
<tr>
<td>München TU</td>
<td>72,8</td>
</tr>
<tr>
<td>Dresden TU</td>
<td>64,4</td>
</tr>
<tr>
<td>Berlin TU</td>
<td>56,1</td>
</tr>
<tr>
<td>Hannover U</td>
<td>55,2</td>
</tr>
<tr>
<td>Dortmund TU</td>
<td>48,5</td>
</tr>
<tr>
<td>Bochum U</td>
<td>41,5</td>
</tr>
<tr>
<td>Chemnitz TU</td>
<td>33,1</td>
</tr>
<tr>
<td>Braunschweig TU</td>
<td>30,4</td>
</tr>
<tr>
<td>Freiburg U</td>
<td>28,7</td>
</tr>
<tr>
<td>Freiburg TU</td>
<td>27,5</td>
</tr>
<tr>
<td>Bremen U</td>
<td>27,0</td>
</tr>
<tr>
<td>Dresden TU</td>
<td>24,0</td>
</tr>
<tr>
<td>Kaiserslautern TU</td>
<td>22,2</td>
</tr>
<tr>
<td>Paderborn U</td>
<td>20,6</td>
</tr>
<tr>
<td>Saarbrücken U</td>
<td>20,4</td>
</tr>
<tr>
<td>Magdeburg U</td>
<td>17,6</td>
</tr>
<tr>
<td>Magdeburg-Essen U</td>
<td>17,2</td>
</tr>
<tr>
<td>Kiel U</td>
<td>16,2</td>
</tr>
<tr>
<td>Bielefeld U</td>
<td>15,5</td>
</tr>
<tr>
<td>Clausthal TU</td>
<td>13,9</td>
</tr>
<tr>
<td>Rostock U</td>
<td>13,8</td>
</tr>
<tr>
<td>Ulm U</td>
<td>12,6</td>
</tr>
<tr>
<td>Siegen U</td>
<td>11,7</td>
</tr>
<tr>
<td>Bayreuth U</td>
<td>10,8</td>
</tr>
<tr>
<td>Kassel U</td>
<td>10,6</td>
</tr>
<tr>
<td>Heidelberg U</td>
<td>10,0</td>
</tr>
<tr>
<td>Berlin HU</td>
<td>9,0</td>
</tr>
<tr>
<td>Bonn U</td>
<td>8,1</td>
</tr>
<tr>
<td>Jena U</td>
<td>7,8</td>
</tr>
<tr>
<td>Weimar U</td>
<td>7,6</td>
</tr>
<tr>
<td>Konstanz U</td>
<td>6,8</td>
</tr>
<tr>
<td>Oldenburg U</td>
<td>6,1</td>
</tr>
<tr>
<td>Münster U</td>
<td>5,7</td>
</tr>
<tr>
<td>München UdBW</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Rang 1–40

Rang 1–40	1250,1	408,4	29,477	42,4
Weitere HS	92,6	10,7	19,646	4,7
HS insgesamt	1342,7	114,1	49,123	27,3
davon Univ.	1333,4	376,7	34,549	38,6
Basis: N HS	121	121	228	121

1) Die Berechnungen erfolgen nur für Hochschulen, an denen 20 und mehr Professorinnen und Professoren beziehungsweise 1 000 und mehr Wissenschaftlerinnen und Wissenschaftler insgesamt im Jahr 2012 im hier betrachteten Wissenschaftsbereich hauptberuflich tätig waren.

Abbildung A-29: Verteilung Umsatz im Verarbeitenden Gewerbe in Baden-Württemberg nach Wirtschaftszweigen

2012

5. Erläuterungen zu „Ströme der Studentinnen und Studenten in den Ingenieurwissenschaften in Baden-Württemberg“

Abbildung A-30: Ströme der Studentinnen und Studenten in den Ingenieurwissenschaften in Baden-Württemberg
Tabelle A-4: Erläuterungen zu „Ströme der Studentinnen und Studenten in den Ingenieurwissenschaften in Baden-Württemberg“

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Angabe</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Durchschnittswert sowie Indikator</th>
<th>Quelle für Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Studentenfängerinnen und -fänger mit HZB-Erwerb im BW</td>
<td>69,5%</td>
<td>70,7%</td>
<td>68,7%</td>
<td>67%</td>
<td></td>
<td>69% = 69</td>
<td>Statistisches Bundesamt (2014), Bildung und Kultur - Nichtmonetäre hochschulstatistische Kennzahlen 1980 – 2013, Fachserie 11 Reihe 4.3.1, Wiesbaden.</td>
</tr>
<tr>
<td>B Studentenfängerinnen und -fänger mit HZB-Erwerb in Deutschland</td>
<td>17,9%</td>
<td>18,1%</td>
<td>18,5%</td>
<td>18,6%</td>
<td></td>
<td>18% = 18</td>
<td>Statistisches Bundesamt (2014), Bildung und Kultur - Nichtmonetäre hochschulstatistische Kennzahlen 1980 – 2013, Fachserie 11 Reihe 4.3.1, Wiesbaden.</td>
</tr>
<tr>
<td>C Studentenfängerinnen und -fänger mit HZB-Erwerb im Ausland</td>
<td>12,6%</td>
<td>11,2%</td>
<td>12,9%</td>
<td>14,4%</td>
<td></td>
<td>13% = 13</td>
<td>Statistisches Bundesamt (2014), Bildung und Kultur - Nichtmonetäre hochschulstatistische Kennzahlen 1980 – 2013, Fachserie 11 Reihe 4.3.1, Wiesbaden.</td>
</tr>
<tr>
<td>J Schwundbilanz Bachelor DHBW</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
<td></td>
<td></td>
<td>5% = 2.400 von 4.807 = 2.400</td>
<td>Es liegen keine gesonderten Daten zur Schwundbilanz Bachelor DHBW vor. Unter der Voraussetzung, dass nur sehr wenige Studenten ein DHBW-Studium abbrechen, wurde eine fünf-prozentige Schwundbilanz angenommen.</td>
</tr>
<tr>
<td>K Studentenabsolventinnen und -absolventen Universität</td>
<td>4.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15% = 7.589 von 28.240</td>
<td>Differenz aus Studienfänger/-innen und Schwundbilanz Bachelor Universität</td>
</tr>
<tr>
<td>L Studentenabsolventinnen und -absolventen HAW</td>
<td>12.516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44% = 4.807 von 4.807</td>
<td>Differenz aus Studienfänger/-innen und Schwundbilanz Bachelor HAW</td>
</tr>
<tr>
<td>M Studentenabsolventinnen und -absolventen DHBW</td>
<td>4.567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16% = 4.807 von 4.807</td>
<td>Differenz aus Studienfänger/-innen und Schwundbilanz Bachelor DHBW</td>
</tr>
<tr>
<td>Bez.</td>
<td>Angabe</td>
<td>Durchschnittswert sowie Indikator [Indikator in Relation zu 100 Studienanfänger/innen Bachelor, gerundet]</td>
<td>Quelle für Werte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Bachelor-Absolventinnen und -Absolventen gesamt</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen von Universität, HAW, DHBW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Bachelor-Absolventinnen und -Absolventen, die nach ihrem Abschluss in den Beruf gehen</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen von Universität, HAW, DHBW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Bachelor-Absolventinnen und -Absolventen, die ihren Master in einem anderen Bundesland machen</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen von Universität, HAW, DHBW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>Bachelor-Absolventinnen und -Absolventen, die nach ihrem Abschluss ins Ausland gehen</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen von Universität, HAW, DHBW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Master-Studienanfängerinnen und -anfänger, die aus einem Beruf kommen</td>
<td>Summe der Master-Studienanfängerinnen und -anfänger, die aus einem Beruf kommen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Master-Studienanfängerinnen und -anfänger, die ihre Master-Berechtigung in einem anderen Bundesland erworbene</td>
<td>Summe der Master-Studienanfängerinnen und -anfänger, die ihre Master-Berechtigung in einem anderen Bundesland erworbene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Master-Studienanfängerinnen und -anfänger, die ihre Master-Berechtigung im Ausland erworbene</td>
<td>Summe der Master-Studienanfängerinnen und -anfänger, die ihre Master-Berechtigung im Ausland erworbene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Master-Studienanfängerinnen und -anfänger gesamt</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen gesamt, die aus dem System addiert mit Zugang Master-Studienanfänger/-innen ins System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Master-Studienanfängerinnen und -anfänger Universität</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen gesamt, die aus dem System addiert mit Zugang Master-Studienanfänger/-innen ins System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Master-Studienanfängerinnen und -anfänger HAW</td>
<td>Summe der Bachelor-Absolventinnen und -Absolventen gesamt, die aus dem System addiert mit Zugang Master-Studienanfänger/-innen ins System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bez.</td>
<td>Angabe</td>
<td>2010</td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
<td>Durchschnittswert sowie Indikator</td>
<td>Quelle für Werte</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>X</td>
<td>Master-Studienanfängerinnen und -anfänger DHBW</td>
<td>1,136 + 1,1 % (prozentualer Anteil von 28,240)</td>
<td>= 1</td>
<td>Statistisches Landesamt Baden-Württemberg (2015), Abfrage durch Expertenkommission: prozentuale Verteilung der Master-Studienanfänger/-innen auf Hochschulen [Universität: 55 %, HAW: 44 %, DHBW: 1 %]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>Master-Schwund DHBW</td>
<td>k.A.* k.A.* k.A.* k.A.*</td>
<td>+ 7 + 0 % (prozentualer Anteil von 28,240)</td>
<td>= 0</td>
<td>Es liegen keine Daten zur Schwundbilanz Master an DHBW vor. Unter der Voraussetzung, dass nur sehr wenige StudentInnen und Studenten ein Master-Studium abbrechen, wurde eine fünf-prozentige Schwundbilanz angenommen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>Master-Absolventinnen und -Absolventen Universität</td>
<td>= 9,181 + 32 % (prozentualer Anteil von 28,240)</td>
<td>= 32</td>
<td>Differenz aus Studienanfänger/-innen und Schwundbilanz Master Universität</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>Master-Absolventinnen und -Absolventen HAW</td>
<td>= 7,206 + 26 % (prozentualer Anteil von 28,240)</td>
<td>= 26</td>
<td>Differenz aus Studienanfänger/-innen und Schwundbilanz Master HAW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD</td>
<td>Master-Absolventinnen und -Absolventen DHBW</td>
<td>= 1,29 + 1 % (prozentualer Anteil von 28,240)</td>
<td>= 1</td>
<td>Differenz aus Studienanfänger/-innen und Schwundbilanz Master DHBW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE</td>
<td>Master-Absolventinnen und -Absolventen gesamt</td>
<td>= 16,515 + 59 % (prozentualer Anteil von 28,240)</td>
<td>= 59</td>
<td>Summe der Absolventinnen und Absolventen Master von Universität, HAW und DHBW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Übergang der Master-Absolventinnen und -Absolventen ins baden-württembergische Beschäftigungssystem gesamt</td>
<td>= 12,513 + 45 % (prozentualer Anteil von 28,240)</td>
<td>= 45</td>
<td>Summe der Master-Absolventinnen und -Absolventen aus Baden-Württemberg und aus einem anderen Bundesland sowie aus dem Ausland</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(* k.A. - keine Angaben)
6. Technologietransfer – Messung und Kennzahlen

Autor:
Arbeitsgruppe „Transfer und Zusammenarbeit“
6.1 Technologietransfer

6.1.1 Ziele

6.1.2 Rahmenbedingungen
Dafür benötigen die Hochschulen und Forschungseinrichtungen eine ausreichende personelle und materielle Ausstattung sowie technische Infrastruktur.
Dies gilt grundsätzlich für alle Hochschulen und Forschungseinrichtungen, insbesondere aber für die Universitäten als „Herzstück des Wissenschaftssystems“ (Wissenschaftsrat) mit ihrer disziplinären Breite und der dort betriebenen Grundlagenforschung als Fundament der angewandten Forschung und Ausgangspunkt für technische und soziale Innovationen.

6.2 Innovationsmessung

6.2.1 Anlass
Für sich genommen noch so interessante Forschungsergebnisse reichen heute nicht mehr aus, um die hohen öffentlichen Investitionen in Wissenschaft und Forschung zu rechtfertigen. Unter dem Druck des scharfen internationalen Wettbewerbs und der begrenzten staatlichen Mittel gibt es in allen Industrieländern verstärkte Aktivitäten zur Messung des Beitrags, den das Wissenschaftssystem zur Innovationsfähigkeit leistet (1). Ein Schwerpunkt liegt auf dem Technologietransfer als wichtigem Beitrag der Hochschulen und Forschungseinrichtungen zum Innovationsgeschehen. Dabei geht es um die Effektivität und um die Kosteneffizienz sowohl des Technologietransfers insgesamt als auch der einzelnen Maßnahmen. Es soll festgestellt werden, welchen Einfluss die öffentliche Forschungsförderung hat, welche Fördermaßnahmen die größte Wirkung zeigen und welche Fördermaßnahmen wie verbessert werden sollten.
Ziel dieser Bemühungen ist es, die volkswirtschaftlichen Effekte der öffentlichen Forschungsförderung zu quantifizieren und zu qualifizieren. Aus den Erkenntnissen sollen Erfolgsfaktoren und Fördermaßnahmen identifiziert und entwickelt werden, die Effektivität und Effizienz der öffentlichen Forschungsförderung und damit den zielorientierten Einsatz der öffentlichen Fördermittel verbessern, um die Innovationsfähigkeit von Wirtschaft, Gesellschaft und Staat nachhaltig zu sichern bzw. zu steigern.

6.2.2 Aktuelle Situation
Ansätze zur Innovationsmessung sind weder neu noch gibt es einen Mangel an Daten (3). Sie blieben jedoch nicht nur in Deutschland wegen der Komplexität und der Dynamik des Innovationsgeschehens und der damit verbundenen Wirkungszusammenhänge, der Differenzierung der Forschungsaktivitäten, der unterschiedlichen Missionen, des unterschiedlichen Selbstverständnisses und der unterschiedlichen Verfasstheit der betroffenen Einrichtungen in Wissenschaft, Wirtschaft und Gesellschaft sowie der daraus resultierenden Probleme bei der Festlegung valider und

Es sind kurz-, mittel- und langfristige Auswirkungen in Form von Outputs (Produkte und Dienstleistungen als unmittelbare Resultate eines Forschungsprojekts), Outcomes (weiterentwickelte Problemlösungsfähigkeit, Umsätze eines Produkts, Ertrag aus einer Lizenzierung) und Impacts (Steigerung der Wettbewerbsfähigkeit eines Unternehmens oder der nationalen und regionalen Volkswirtschaft) zu unterscheiden. Sie überlagern sich, treten in Kombination auf und lassen sich häufig nicht eindeutig zuordnen.

6.3 Erfolgsfaktoren – Kennziffern des Technologietransfers

6.3.1 Anforderungen

<table>
<thead>
<tr>
<th>Bereiche</th>
<th>Technologie-transfer Aktivitäten</th>
<th>Quantitative Kennzahlen</th>
<th>Qualitative Kennzahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Köpfe</td>
<td>Erstausbildung</td>
<td>– Zahl der Studienanfängerinnen und Studienanfänger insgesamt</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Studienanfängerinnen</td>
<td>– Zusammenarbeit zwischen Hochschulen und Wirtschaft bei der Entwicklung von Studiengängen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Absolventen und Absolventinnen insgesamt</td>
<td>– Verankerung von Entrepreneurship-Inhalten in Curricula</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Absolventinnen</td>
<td>– Beschäftigungsquote der Absolventinnen und Absolventen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Forschungsprojekte von Studentinnen und Studenten mit Themen aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der BA- und MA-Abschlussarbeiten mit Themen aus der Wirtschaft und gemeinsamer Betreuung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Lehrbeauftragten aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Graduiertenausbildung</td>
<td>– Zahl der Promotionen während der Berufstätigkeit in Unternehmen</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Promotionen mit Finanzierung aus der Wirtschaft</td>
<td>– Zahl der Promotionen mit wiederholter Beteiligung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Graduiertenkollegs mit teilweiser oder ganzer Finanzierung aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weiterbildung</td>
<td>– Zahl der Kurse mit und ohne Zertifikat</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der berufsbegleitenden Studiengänge</td>
<td>– Zahl der Unternehmen mit wiederholter Beteiligung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Kursteilnehmerinnen und Kursteilnehmer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der beteiligten Unternehmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Höhe der Einnahmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Publikationen</td>
<td>– Zahl gemeinsamer Publikationen zwischen Wissenschaftlerinnen und Wissenschaftlern aus Hochschulen und Unternehmen insgesamt</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl gemeinsamer Publikationen in peer-reviewed Zeitungen</td>
<td>– Zahl der Unternehmen mit wiederholter Beteiligung</td>
</tr>
<tr>
<td></td>
<td>Austausch</td>
<td>– Zahl der Berufungen aus der Wirtschaft im Berichtszeitraum und insgesamt</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Stiftungsprofessuren aus der Wirtschaft im Berichtszeitraum und insgesamt</td>
<td>– Prozentualer Anteil der Professorinnen und Professoren aus der Industrie an der Professorenschaft insgesamt, insbesondere in den Ingenieurwissenschaften und den Naturwissenschaften</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Professorinnen und Professoren und Forschungsgruppenleiterinnen bzw. -leiter mit Finanzierung aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Professorinnen bzw. Professoren und Forschungsgruppenleiterinnen bzw. -leiter mit Doppelbeschäftigung in Hochschule und Unternehmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der für eine mehrjährige Beschäftigung in Unternehmen beurlaubten Professorinnen und Professoren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Professorinnen und Professoren sowie Wissenschaftlichen Mitarbeiterinnen und Mitarbeiter mit bis zu einjähriger Beschäftigung in Unternehmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Zahl der Mitarbeiterinnen und Mitarbeiter von Unternehmen mit bis zu einjähriger Beschäftigung in Hochschulinstiutaten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projekte</td>
<td>– Einnahmen aus der Wirtschaft insgesamt</td>
<td>– Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Prozentualer Anteil an den Drittmitteln insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Prozentualer Anteil am Grundhaushalt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Einnahmen von KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Prozentualer Anteil an den Einnahmen aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td>Bereiche</td>
<td>Technologie-Transfer Aktivitäten</td>
<td>Quantitative Kennzahlen</td>
<td>Qualitative Kennzahlen</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Projekte</td>
<td>Verbundforschung</td>
<td>- Zahl der Projekte</td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Projekte mit Beteiligung von KMU</td>
<td>- Zahl der Unternehmen mit wiederholter Beteiligung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Prozentualer Anteil dieser Projekte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der beteiligten KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der beteiligten Wissenschaftlerinnen und Wissenschaftler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Einnahmen insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auftragsforschung</td>
<td>- Zahl der Projekte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Projekte mit KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Prozentualer Anteil dieser Projekte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Einnahmen insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Prozentualer Anteil an den Drittmittelteinnahmen aus der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Einnahmen aus KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Prozentualer Anteil dieser Projekte</td>
<td></td>
</tr>
<tr>
<td>Patente und Lizenzen</td>
<td>- Zahl der angemeldeten Patente</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der bewilligten Patente im Berichtszeitraum und insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Lizenzen im Berichtszeitraum und insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Lizenzen an KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe der Lizenzerlöse</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Softwareprogramme ohne Patentschutz zur freien Nutzung</td>
<td></td>
</tr>
<tr>
<td>Ausgründungen</td>
<td>- Zahl der Ausgründungen im Berichtszeitraum</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren (Zahl der Mitarbeiterinnen und Mitarbeiter, Umsatzentwicklung)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Ausgründungen insgesamt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Beschäftigten in den Ausgründungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe der öffentlichen Fördermittel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe der finanziellen Beteiligung von privater Seite</td>
<td></td>
</tr>
<tr>
<td>Kooperationen</td>
<td>- Zahl der Beteiligungen an Netzwerken, Technologieplattformen usw.</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der beteiligten Firmen, insbesondere KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Industry on Campus-Projekte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Beteiligung an Clustern (lokal, regional, national und international)</td>
<td></td>
</tr>
<tr>
<td>Dienstleistungen durch Beratung und Bereitstellung der technischen Infrastruktur</td>
<td>- Zahl der Beratungsverträge des Lehrkörpers</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der beteiligten Unternehmen, insbesondere KMU</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der daraus entstandenen Projekte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Nutzung der Infrastruktur durch Unternehmen für Prüf-, Test-, Demonstrations-, Prototyp- und Proof-of-Concept-Zwecke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe der Einnahmen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe des Finanzierunganteils der Wirtschaft an der Infrastruktur</td>
<td></td>
</tr>
<tr>
<td>Veranstaltungen und Messen</td>
<td>- Zahl der Vorträge mit Transferbezug von Wissenschaftlerinnen bzw. Wissenschaftlern auf Einladung</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der organisierten Veranstaltungen auf lokaler, regionaler, nationaler und internationaler Ebene</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Beteiligung an Messen</td>
<td></td>
</tr>
<tr>
<td>Wettbewerbe und Preise mit Transferbezug</td>
<td>- Zahl erfolgreicher Teilnahmen (Stifterverband, Deutscher Zukunftspreis, Seifriz-Preis usw.)</td>
<td></td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl daraus entstandener Kooperationen</td>
<td></td>
</tr>
</tbody>
</table>
Anhang

A-58

<table>
<thead>
<tr>
<th>Bereiche</th>
<th>Technologie- transfer Aktivitäten</th>
<th>Quantitative Kennzahlen</th>
<th>Qualitative Kennzahlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>Leitungs- und Verwaltungsstruktur der Hochschule</td>
<td>- Stellenwert des Technologietransfers im Struktur- und Entwicklungsplan</td>
<td>- Entwicklung über eine Zeitschiene von x Jahren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vertretung des Technologietransfers in der Hochschulleitung</td>
<td>- Dienstleistungsportfolio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Personelle und materielle Ressourcen der Technologie- transfer-Einheit</td>
<td>- Kompetenzen und Spezialisierung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der internen und externen Beratungen der Technologie- transfer-Einheit</td>
<td>- Struktur und Qualität des Wissens- und Transfermanagements</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der vermittelten Kontakte mit der Wirtschaft, insbesondere KMU</td>
<td>- Strategie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der vermittelten Kooperationen mit der Wirtschaft</td>
<td>- Umfragen in Hochschule und Wirtschaft bzgl. Wahrnehmung und Akzeptanz im regionalen und nationalen Umfeld</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Zahl der Veranstaltungen mit der Wirtschaft</td>
<td>- Austausch des Technologietransfer-Personals in Hochschule und Unternehmen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Höhe der Drittmitteleinnahmen aus der Wirtschaft</td>
<td></td>
</tr>
</tbody>
</table>

Angesichts des unbefriedigenden aktuellen Standes kann ein transparentes und aussagekräftiges Kennzahlensystem für den Technologietransfer nur schrittweise entwickelt werden. Die Hochschulen und Forschungseinrichtungen sollten sich zunächst auf die Bereiche mit den entsprechenden Kennzahlen beschränken, die ihre Schwerpunkte im Technologietransfer abbilden, mit denen sie längere Erfahrungen haben und die mit entsprechenden Zahlen der amtlichen Statistik und einschlägiger Messsysteme in der Wirtschaft verbunden werden können. Sie sollten sich auf die quantitativen Aspekte konzentrieren. Dazu bietet es sich an, auf die Daten und Kennzahlen zurückzugreifen, die sie für die verschiedenen Wettbewerbsverfahren und Evaluationen in den vergangenen Jahren bereitstellen mussten (6). Der Katalog der Transferaktivitäten sollte kontinuierlich erweitert und zunehmend auch um qualitative Aspekte ergänzt werden.

Am Ende dieser Entwicklung sollte ein zuverlässiges und effizientes Kennzahlensystem aus Treiber- und Ergebnisgrößen verfügbar sein, mit dessen Hilfe die internationale und regionale Wettbewerbsfähigkeit systematisch gesteigert werden kann. Dies wäre ein wichtiger Beitrag zur Förderung einer starken regionalen Innovationskultur im Zusammenspiel zwischen Hochschulen und Unternehmen.

6.4 Empfehlungen

3. Die Hochschulen des Landes sollten eine Arbeitsgruppe einrichten, um ein gemeinsames aussagekräftiges Kennzahlensystem für den Technologietransfer in Baden-Württemberg zu entwickeln, das sich an den Bedürfnissen der baden-württembergischen Wirtschaft orientiert, die Rahmenbedingungen der Wissenschaft berücksichtigt, anschlussfähig an die amtliche Statistik und die einschlägigen Kennzahlensysteme in der Wirtschaft ist sowie qualitative Faktoren des Innovationsgeschehens und der Innovationskultur abbildet.

Anmerkungen:

Quellenangaben

I. Statistische Publikationen
5. Zentrum für Europäische Wirtschaftsforschung (ZEW), Results of EU-Community Innovation Survey for Germany, Mannheim 2014
8. Landesamt für Statistik Baden-Württemberg, Innovationsindexe seit 2008
11. Zentrum für Europäische Wirtschaftsforschung (ZEW), Mannheimer Innovationspanel – Deutsche Innovationserhebung
II. Fachpublikationen

1. BMBF, Bundesbericht Forschung 2014, Berlin 2014
7. M. Holi, R. Wickramasinghe, & M. Leeuwen, Metrics for the evaluation of knowledge transfer activities at universities, Library House 2008, pp 1-33
17. Wissenschaftsrat, Empfehlungen zur Interaktion von Wissenschaft und Wirtschaft, Berlin 2007
18. Wissenschaftsrat, Empfehlungen zu einem Kerndatensatz Forschung, Berlin 2013
Impressum

Kommissionsleitung:

Professor Dr.-Ing. Thomas Bauernhansl (Vorsitzender)
Leiter des Instituts für Industrielle Fertigung und Fabrikbetrieb, Universität Stuttgart
Leiter des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA

Professorin Dr. rer. nat. Britta Nestler (stellvertretende Vorsitzende)
Leiterin des Instituts für Angewandte Materialien – Computational Materials Science, Karlsruher Institut für Technologie
Leiterin des Institute of Materials and Processes, Hochschule Karlsruhe Technik und Wirtschaft

Geschäftsstelle IngW@BW2025:

Susann Kärcher - Institut für Industrielle Fertigung und Fabrikbetrieb, Universität Stuttgart
Judith Deparade - Institut für Industrielle Fertigung und Fabrikbetrieb, Universität Stuttgart

Weitere Mitwirkende:

Mareike-Kathrin Bolsinger - Referentin des Vorsitzenden des HAW BW e.V.
Dr.-Ing. Björn Ebel - Institut für Produktentwicklung, Karlsruher Institut für Technologie
Dr. phil. Klaus Erlach - Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dr. phil. Birgit Spaeth - Institut für industrielle Fertigung und Fabrikbetrieb, Universität Stuttgart
Benjamin Walter - Institut für Produktentwicklung, Karlsruher Institut für Technologie

Lektorat:

Martin Schäfer

Layout und Druck:

Medienfabrik GmbH

Berichterstellung unterstützt durch:

Dr.-Ing. Julia Kaazke - Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg